
.T

SOFTWARE ENGINEERING LABORATORY SEL-88-004

PROCEEDINGS OF THE
THIRTEENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

NOVEMBER 1988

National Aeronautics and

Space Administration

6oddard Space F'light Center
GreenbelL Maryland 20771

PROCEEDINGS

OF THE

THIRTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

November 30, 1988

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administration

Goddard Space Flight Center (NASA/GSFC) and created for the

purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has three

primary organizational members:

NASA/GSFC (Systems Development Branch)

The University of Maryland (Computer Sciences Department)

The Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (i) to understand the software

development process in the GSFC environment; (2) to measure the

effect of various methodologies, tools, and models in the

process; and (3) to identify and then to apply successful

development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of reports

that includes this document.

Single copies of this document can be obtained from:

NASA/Goddard Space Flight Center

Systems Development Branch
Code 552

Greenbelt, Maryland 20771

iii

P_I6E_ I[_INTENTIONAI_LY 8L4NK

AGENDA

THIRTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 8 AUDITORIUM

NOVEMBER 30, 1988

8:00 a.m.

8:45 a.m.

Registration - 'Sign-In'

Coffee, Donuts

INTRODUCTORY REMARKS

9:00 a.m. Session No. 1

"Evolving Impacts of

Ada on a Production

Environment"

"Measuring/Reusing and

Maintaining Ada
Software"

"The Software Management
Environment"

10:30 a.m.

ii:00 a.m.

BREAK

Session No. 2

"A Communication

Channel Model of

the Software Process"

"Knowledge-Based

Assistance in Costing the

Space Station Data

Management System"

"Software Sizing, Cost

Estimation and Scheduling"

12:30 p.m. LUNCH

Frank E. McGarry

(NASA/GSFC)

Topic: Studies

and Experiments
in the SEL

Frank McGarry

(NASA/GSFC)
Linda Esker and

Kelvin Quimby

(csc)

Vic Basili and

Marv Zelkowitz

(Univ. of MD)

Jon Valett

(NASA/GSFC)

Bill Decker and

John Buell (CSC)

Topic: Software
Models

Discussant:

Jerry Page (CSC)

Robert Tausworthe

(JPL)

Troy Henson and

Kyle Rone (IBM)

William Cheadle

(Martin Marietta)

AGENDA(Con't)

1:30 p.m.

3:00 p.m.

3:30 p.m.

Session No. 3

"Reverse Engineering:
An Aid in Understanding"

"Ada Software Productivity

Analysis"

"Experiences with Ada in

an Embedded System"

BREAK

Session No. 4

"A Practical Approach to

Object Based Requirements

Analysis"

"A Modernized PDL Approach

for Ada Software Development"

"Representing Object-Oriented

Specifications and Designs

with Extended Data Flow

Notation"

5:00 p.m. ADJOURN

Topic: Study of
Software Products

Discussant :

John Musa

(Bell/Labs)

Hasan Sayani

(ASTEC)

Jairus M. Hihn,

Hamid Habib-Agahi

and Shan Malhotra

(JPL)

Robert LaBaugh

(Martin Marietta)

Topic: Tools

Discussant:

Mike Gardner

(csc)

Daniel W. Drew

Michael Bishop

(Unisys)

Paul Usavage, Jr

(GE)

Jon Franklin

Buser and

Paul T. Ward

(Software

Development

Concepts)

vii

SUMMARY OF THE THIRTEENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

By

Linda Landis

COMPUTER SCIENCES CORPORATION

SUMMARY OF THE THIRTEENTH ANNUAL

SOFTWARE ENGINEERING WORKSHOP

On November 30, 1988, approximately 450 attendees gathered

in Building 8 at the National Aeronautics and Space Admini-

stration (NASA)/Goddard Space Flight Center (GSFC) for the

Thirteenth Annual Software Engineering Workshop. The meet-

ing is held each year as a forum for information exchange in

the measurement, utilization, and evaluation of software

methods, models, and tools. It is sponsored by the Software

Engineering Laboratory (SEL), a cooperative effort of NASA/

GSFC, the University of Maryland, and Computer Sciences

Corporation (CSC). Among the audience were representatives

from 6 universities, 22 government agencies, 8 NASA centers,

and 78 private corporations and institutions. Twelve papers

were presented in four sessions:

• Studies and Experiments in the SEL

• Software Models

• Study of Software Products

• Tools

Speakers accepted questions after their presentations and

during panel discussions at the end of each session. Re-

sponses and comments elicited from audience members resulted

in a lively exchange.

SESSION 1 - STUDIES AND EXPERIMENTS IN THE SEL

Frank McGarry of GSFC introduced the workshop and opened the

session. In his presentation (Evolvinq Impacts of Ada on a

Production Environment), McGarry addressed five major ques-

tions:

What is the impact of Ada on development profiles?

What are its effects on productivity, reliability,

and maintainability?

L. Landis
CSC
1 of 15

• How does the impact change from first-time Ada use

through third-time?

• Do we use Ada differently over time?

$ How long does it take to reap the promised benefits

of Ada?

McGarry described the use of Ada on NASA/GSFC Flight Dynam-

ics Division (FDD) projects and characterized each project

by level of Ada experience. He found that the first Ada

project had a phase distribution similar to that of a paral-

lel FORTRAN project for predesign, design, code, and test as

a percentage of total effort. The predicted shift to more

effort in design did occur on subsequent Ada projects but

was not observed on projects characterized as first-time Ada

use. Productivity statistics showed that the total lines of

code (LOC) per staff day improved significantly from first-

time projects to those of third-time Ada use. The trend in

number of statements per staff day was also up, although the

FORTRAN project's statistic remained higher.

McGarry emphasized that the use of Ada features changed

appreciably with experience; the use of generics, strong

typing, and packages increased while the use of tasking de-

clined. He also concluded that the use of Ada reduces in-

terface errors. In summary, McGarry noted the following:

$ Overhead cost of Ada usage was 30 percent in

first-time projects, but significant improvement

was noticed in second- and third-time projects.

• Reliability was similar to FORTRAN initially but

improved with experience.

• Positive trends in reuse were noted, already

exceeding FORTRAN.

L. Landis
CSC
2 of 15

• Ada projects have a higher total LOC than FORTRAN

projects, but the number of statements is approxi-

mately equal.

• The use of Ada features evolved with experience and

appears related to improved productivity and reli-

ability, although certain features were found to be

inappropriate for the FDD environment.

The second presentation (TQward a Reuse-Oriented Software

EvQl_iQn Process) was given by Victor Basili of the Univer-

sity of Maryland. The problem Basili posed was that, al-

though reuse of experience is key to productivity and

quality, current reuse practices are ad hoc, implicit, and at

the code level. Reuse, he stated, must be built into the

software development process, and models of the reuse envi-

ronment must be constructed. Reuse in the traditional,

project-specific, SEL software evolution environment is not

only explicit through code, Basili found, but is implicit

through people; the same processes, management, and support

tools have been used by SEL projects over a long period.

Basili proposed a reuse-oriented software evolution model

that would supplant the traditional model. It would incor-

porate improvements in software development by recording

learning in a repository of well-classified experience (the

experience base). The goal would be to maximize the use of

the recorded information during project planning and execu-

tion. The experience would be massaged off-line to gener-

alize the information gathered and would be tailored on-line

for specific project applications as needed. Formalization

would encode the experience in a more precise, understand-

able manner.

Basili concluded that integrated models are needed for all

activities to achieve maximum reuse and minimum tailoring.

Models and project goals are also required to develop useful

L. Landis
CSC
3 of 15

measures of reuse, as opposed to source LOC (SLOC). In the

SEL, the movement to Ada has incurred costs in the short

run, but explicit reuse characterization can and does help.

Jon Valett of GSFC presented the third paper of the session

(The Software Manaaement Environment {SME)). The goals of

the SME project, Valett explained, are to integrate experi-

ence and knowledge from completed software projects and feed

it back to management. The process is automated via a tool

set that uses historical information about software develop-

ment. The SME compares development profiles of current ver-

sus past projects; predicts cost, reliability, and error

rates; analyzes the strengths and weaknesses of projects;

and provides expert guidance regarding overall project

quality.

The SME is constructed in Pascal on a VAX-II/780 computer

connected to IBM personal computers (PCs). Its components

are the SEL database, models and measures created as a re-

sult of SEL research, and software development rules. The

SEL database contains data on resource utilization, project

growth, and methodology characterization. The rules are

based on information obtained from experienced managers and

from analyses of collected information and models.

Valett then showed how the SME would respond to a sample

question: "How does my project compare with other projects

in respect to number of errors?" The result was a graph of

the average project error rate versus that of the current

project. The system could analyze the error data and pre-

dict key project information. If the error rate was abnor-

mally low, such an analysis might display three possible

causes: insufficient testing, experienced team, or problem

less difficult than expected. The results of prediction

would_ be a graph showing the extrapolated error rate at proj-

ect conclusion. Valett also displayed screens from the SME

L. Landis
CSC
4of 15

as it has been currently developed, in which actual versus

expected growth in a typical system were contrasted. Valett

noted that the system is designed to incorporate dynamic

development of models and rules and an improved knowledge of

the environment.

In response to a question during the panel session pertain-

ing to the cost of data collection, McGarry said that the

overhead cost of collecting SEL metrics was 3 to 4 percent,

8 to I0 percent for processing the data, and up to 25 per-

cent for analysis. No information on Ada maintainability

was yet available, and no attempt had been made to incorpo-

rate Ada in a real-time system. Asked why the design error

rate on first-time Ada projects was higher than on FORTRAN

projects, McGarry noted that the FORTRAN design process was

highly familiar whereas the Ada design process was new.

When asked how increased Ada knowledge was distinguished

from experience in an application, McGarry answered that it

was not, and that the relative importance of application

versus language experience was not yet understood. Respond-

ing to the question, "Have you looked beyond technical proc-

esses to attitude and institutional roadblocks?", Basili

observed that there is no current institutional motivation

for reuse; in fact, there is motivation (in contracts) for

non-reuse.

SESSION 2 - SOFTWARE MDDELS

In the first presentation, Robert Tausworthe of the Jet

Propulsion Laboratory (JPL) likened the process of software

development to a noisy channel (A Communication Channel

Mod_l of the Software Process). Over this channel--composed

of people and hardware--information flows, is transformed,

distorted, erased, delayed, and otherwise modified. The

problems with communication channels, Tausworthe said, are

high costs, too long a delay between need and satisfaction,

L. Landis
CSC
5 of 15

and a need-to-satisfaction correlation that is too difficult

to compute. To cope with noisy channels, it is necessary to

• Measure and characterize the channel's parameters

• Expect transmission noise

• Design throughput below channel capacity

• Make information resilient to channel disturbances

• Transmit with greatest signal force possible

• Reduce noise

• Use feedback to correct errors

As axioms, Tausworthe stated that a mapping exists between

input requirements and output; that information is not cre-

ated, it is transformed or lost; that intelligence in the

channel contributes to the transformation and noise energy;

and that the product yield results from the minimum product

specification plus the minimum for all reused parts. In a

product-builder channel model, the amount of information

into the design engine and factory are the same, but are

transformed. The knowledge base and catalog of inputs rep-

resent the transform engine; to the extent these are sup-

plied by automation, productivity increases. Using the

axioms, Tausworthe derived a formula for production capacity

in which the degree of reuse would ultimately determine the

bound on productivity. In summary, Tausworthe indicated

that the area for productivity improvement was limited, and

that the language advantage grows as long as the average

yield of reusable parts can be made to increase.

Troy Henson of IBM was the next speaker (Knowledue-Based

Assistance in Costinu the Space Station Dat% Man_qement SMs-

tem). He noted the many complex factors that affect a soft-

ware cost estimate: historical data, software size,

productivity, complexity, schedule, project constraints, and

criticality. The problem, Henson declared, was to increase

the productivity and reliability of software cost estimation

L. Landis
CSC
6 of 15

(SCE) by defining the process, automating the methodology,

and providing SCE courses. Currently, he said, SCE courses

are offered at IBM, and nine algorithmic PC-based tools and

a Lotus tool have been developed. The prototype tools in-

clude two expert systems: the Software Complexity Determi-

nation Assistant and the Software Criticality Assistant.

The Space Station Data Management System (SSDMS) posed

special problems in cost estimation due to its long life,

remote integration, distributed environment, phased techno-

logy insertion, etc. A costing methodology was defined in

which requirement specifications were translated to func-

tions. For each function, the size in LOC, criticality,

complexity, and release designation were specified. Produc-

tivity and verification factors were computed, and the man-

months required to accomplish the task were calculated.

Henson concluded that using the SCE tools in costing the

SSDMS improved efficiency, accuracy, and consistency. The

tools provided a foundation that may be calibrated and ex-

panded to include other areas of software system engineering

process control. Responding to questions, Henson noted that

their SCE models and database were more relevant than COCOMO

for their particular project costs.

The sixth speaker was William Cheadle of Martin Marietta

(Software Sizina. Cost Estimation and Schedulina). Cheadle

said that Martin Marietta (MMC) has been looking into soft-

ware development for 15 years and has studied the total life

cycle from the definition of a system through final inte-

gration. A number of parametric models are in use at MMC:

two versions of parametric cost estimation models, a main-

tenance model, a performance measurement model, a sizing

model, a CSCI/CPCI integration model, a risk analysis

L. Landis
CSC
7 of 15

simulation tool, and a software architecture sizing and es-

timating tool. A large database has been accumulated over

the 15-year period; it currently contains information on

over 53 projects.

The costing profile based on this historical data shows

that, on older projects developing "spaghetti" code, 25 per-

cent of the total effort was expended by critical design

review (CDR), whereas projects using top-down methodology

expended 45 to 55 percent. Analysis of the data also re-

veals that one SLOC required an average of 2.24 hours of

effort when computed over the full project life cycle.

Cheadle added that an Ada SLOC is computed at MMC by count-

ing semicolons. In response to a question, Cheadle noted

that data from projects using rapid prototyping were going

into the models, resulting in significant cost changes.

_SSION 3 - STUDY OF SOFTWARE PRODUCTS

Hasan Sayani from ASTEC (Reverse Enuineerinu: An Aid to

Understandinu) was the first speaker of the afternoon ses-

sion. Sayani defined reverse engineering as working back-

ward from any phase in the development life cycle. Without

supporting documentation, he said, the process of reverse

engineering is somewhat akin to archaeology. Its success

depends on recognizing that information may be lost and that

ambiguities are inevitable. Reverse engineering may be per-

formed to (1) understand the current system; (2) maintain or

change the current system; (3) determine where enhancements

to the system are needed and what their effects would be;

(4) merge one system with another by defining the common

data and interfaces; and (5) inject new technology (e.g., a

DBMS).

Sayani described a tool containing an interpreter that ac-

cepts source code and generates program specification lan-

guage (PSL) statements. The program abstraction is then

stored in a database from which reports may be generated.

L. Landis
CSC
8 of 15

CASE tools may be used to produce a diagram of the system,

and other relevant data may be merged.

Through reverse engineering, it is possible to examine the

translated language to learn the architecture of procedure

calls and data structures. It is also possible to synthe-

size desired aspects across code units and to pinpoint prob-

lems. Sayani noted that, on one very large system under

maintenance, an 8-to-i savings using the reverse engineering

tool was observed. Rework was vastly reduced since the rip-

ple effects of modifications could be predicted.

Sayani noted potential pitfalls in the reverse engineering

process, such as unexpected code constructs, differences in

programming styles, and diverse organizational standards.

He predicted that future technology would adapt to broader

source code input, produce sophisticated models across lan-

guages, have better CASE interfaces, and regenerate code.

The next speaker, Jairus Hine of JPL, presented a case study

of Ada projects at JPL (Ada Software Productivity Analysis),

where two main databases are used to record the size and

cost of software development: a NASA historical database

with i0 projects, and a JPL database with 4 projects. In

the JPL database, one project caught the eye of the re-

searchers; it had the highest productivity of all the proj-

ects examined, and it used Ada. The problem was to

determine how much of the effect was due to Ada use. Hine

first examined subsystems within this first project, then

compared Project 1 with Project 2, a similar system written

in Pascal.

Project 1 contained 500,000 LOC and used Ada and C in a pro-

totype environment. Each subsystem used different amounts

of Ada. The project was straightforward and was charac-

terized by good communication between users and competent

developers. A general rise in productivity was initially

L. Landis
CSC
9 of 15

observed as the percent of Ada used in a module increased;

however, productivity on the subsystem tasks differed

greatly. This Hine attributed to differences in Ada experi-

ence and tool and rule availability from one task to the

next. Adjusting for these environmental factors, the pro-

ductivity of the tasks was seen to be very similar, regard-

less of the amount of Ada used. When Hine grouped the tasks

into two categories, primarily Ada and primarily non-Ada, he

observed an increase of 2 LOC per day (15 percent overall)

in productivity in the Ada group. However, the normalized

productivity in Project 1 was found to be considerably lower

than that of the Pascal Project (7.4 vs 13.5 SLOC/day).

Part of this, Hine added, could be due to the Ada learning

curve and other unadjusted environmental factors. Hine hy-

pothesized that, given experienced programmers, a I0- to

25-percent increase in productivity would be possible with

Ada. Similar productivity gains, he suggested, were possi-

ble with languages other than Ada using modern, modularized

design methods.

The final speaker of the session, Robert LaBaugh of Martin

Marietta, discussed a project that successfully used Ada in

an embedded application for real-time control of a robot arm

(Experiences with Ada in an Embedded System). The objec-

tives were to use Ada, evaluating such features as tasking

performance, and to develop a generalized control system

based on the NASA reference model for control architecture,

NASREM. Th@ application concentrated on the two lowest

levels of the NASREM architecture: the servo level, which

is closest to the hardware, and the primitive level. The

system, including all low-level hardware interfaces and con-

trollers, was developed as ii tasks coded in standar_ Ada.

System performance was more than adequate; all NASREM levels

were able to execute within a single 20-millisecond control

loop.

L. Landis
CSC
10 of 15

La Baugh reported the following as lessons learned from the

project: The ability to test/debug on a host does not elim-

inate testing on the target machine. Portability with Ada

is not automatic; there are differences in tasking implemen-

tations. Public domain packages need support; the math

library worked on the development machine, but machine-

specific parameters produced errors on the target machine.

Resistance was encountered to using Ada alone for embedded

real-time applications, both from "experts" who had heard

that Ada was insufficient and from compiler and real-time

kernel vendors.

LaBaugh was asked to comment on the statement of experts

that tasking cannot be used in embedded systems. He re-

sponded that tasking worked, and that using the delay state-

ment to simulate time-slicing fixed the problem encountered

when the system was ported to the target machine. Respond-

ing to further questions, LaBaugh noted that their design

was ad hoc, based on the NASREM architecture, and that, al-

though reuse could be effective in defining NASREM layers,

they could not use generic packages while maintaining sepa-

rate task priorities.

SESSION 4 - TOOLS

The final session was introduced by Mike Gardner of CSC.

Gardner noted that the introduction of object-oriented pro-

gramming and design has raised the question, "Do we continue

to use functionally oriented methods in the requirements

analysis phase, or should we be moving to object-oriented

techniques?" This issue, he said, was the main topic to be

addressed in the fourth session.

Daniel Drew began the session with a discussion of the method

employed for requirements analysis at Unisys (A Practical

Approach to Obiect Based R_q_ir_ments Analysis).

L. Landis
CSC
11 of 15

As a maintenance organization for the shuttle, Unisys in

Houston is interested in using Ada to rewrite or replace

existing software. They organize all requirements informa-

tion into a notebook and use the data to generate a baseline

requirements list (BRL). From the BRL, a static entity-

relationship (ER) model and object data flow diagrams (ODDs)

are created. The object-oriented design is then coded,

tested, and delivered.

Drew noted that organizing the BRL forces examination of

each requirement. Automated tracking of this list was es-

sential, but simple tools such as a word processor would

suffice. Drew said that extracting entities was straight-

forward, although identifying relationships and attributes

and leveling the ER model were not. Drew's group also dis-

covered that naming objects to support the system structure

was critical, and that a computer-aided tool was needed to

maintain the data dictionary. Drew stated that the problem

lies in representing the information, and that database

techniques such as ER modeling are appropriate. He added

that customer communication needs to be addressed and noted

that customers easily understood ODD representations.

Paul Usavage, Jr., of General Electric (GE) was the next

presenter (A Modernized PDL Approach for Ada Software

Development). The problem, he stated, was to incorporate

the benefits of Ada using an automated approach with graphic

design tools, while maintaining a high level of risk manage-

ment. As a result of their investigations, the GE team pro-

posed the following improvements to the software development

process:

L. Landis
CSC
12 of 15

Base the software design on the accumulated results

of structured analysis

State requirements with data flow diagrams (DFDs)

to aid in understanding the problem

• Design using integrated graphics and program design

language (PDL)

• Edit PDL within a graphics context

• Incorporate compiled Ada interfaces

• Perform iterative refinement against graphics and

PDL together

• Produce preliminary and as-built design documents

automatically

• Use a graphics index to PDL

• Maintain the design database via tools

The team then examined three projects to determine how well

these proposals work. Analysis of the first project showed

compilation of Ada PDL and control blocks to be inconven-
ient. Errors uncovered in compilation were mostly in syntax

rather than design, and alternative designs became less fea-

sible to generate. Analysis of the second project showed

that high-level partitioning based on DFDs worked well and

that implementation-level partitioning using PDL and com-

piled package specifications suffered from rework due to a

longer cycle time. The third project used a methodology

that was close to that proposed by the team. Analysis

showed that the project's object-oriented approach was suc-

cessful and that the use of graphics worked well.

In conclusion, Usavage noted that graphics and structure

charts work better at the high levels of abstraction and

that PDL is clearly better at a lower level. He also recom-

mended that a PDL processor be integrated with graphics in a

CASE environment. In response to the comment that most peo-

ple treat structured analysis and object-oriented design as

mutually exclusive, Usavage observed that, although it was

not easy to go from one to the other, doing so was a power-

ful tool for understanding the problem.

L. Landis
CSC
13 of 15

The last speaker was Jon Franklin Buser of Software Develop-

ment Concepts (SDC) (Representing Object-Oriented Specifica-

tions and Desiqns With Extende_ Data Flow Notation). A

current goal of SDC, said Buser, is to develop ways to rep-

resent object-oriented design and specifications with DFDs.

DFDs have certain advantages: they are supported by many

CASE tools, they are neither language nor operating-system

specific, and many software engineers already have a working

understanding of the methodology. There are also some prob-

lems: CASE tools enforce unique names, which conflicts with

component reuse; level-balancing conflicts with building

generic components that have unused access functions; and

commonly used partitioning strategies can lead to the loss

of the concept of software objects.

Using the example of a simple data storage and reporting

system, Buser suggested several new partitioning conventions

for representing objects:

• Group all processes that operate on the same

real-world object

• Group all data flows associated with the same proc-

ess or routine

• Name the combined flow for access routines

• Use a double arrow for access routine I/Os

Buser showed an improved diagram for the sample system, in

which two-way flows were named to identify the object with

which the flow was associated. He concluded by stating that

more work with these conventions was needed. CASE tools

should be enhanced to support reuse and inheritance, whereas

they currently defeat these efforts. Browsers are needed

for scanning libraries of reusable components documented by

DFDs. Asked if it is difficult to get people to think in

terms of objects, Buser responded that by following the

L. Landis
CSC
14 of 15

development methodology that SDC taught--first building an

information model, then examining the behavior patterns of

the objects using state-machine diagrams, and lastly build-

ing the process models--it was possible to sidestep issues

of an established mindset.

In the panel session, the question was raised as to how to

group objects with functions correctly. Every store and

flow is a candidate operation for an object, Usavage con-

tributed, noting that a colleague has developed a mechanical

transfer process changing arrows to bubbles and vice versa.

Mike Gardner then asked if the Unisys approach was not re-

moving information by not showing operations in some way,

with which Drew agreed, although he felt that functionality

was apparent in an ODD.

L. Landis
CSC
15 of 15

PANEL #I

STUDIES AND EXPERIMENTS IN THE SEL

F. McGarry, NASA/GSFC

V. Basili, University of Maryland

J. Valett, NASA/GSFC

N91-10607

EVOLVING IMPACT OF ADA ON A

PRODUCTION SOFTWARE ENVIRONMENT

F. McGarry (NASA/GSFC)

L. Esker (CSC)

K. Quimby (CSC)

/

(-,

/"

1.0 BACKGROUND (Chart i)

Since 1985, the Software Engineering Laboratory (SEL) has been

studying the impact of Ada and Ada-related technologies on the

software development of production projects within the Flight

Dynamics Division (FDD) at NASA/GSFC. Until then, all software

development projects had used FORTRAN as the primary implemen-

tation language. The Ada development work began with a pilot

project and a research project that paralleled a production

FORTRAN development project (References 1 and 2). After this

initial Ada experience, several later production projects were

developed in Ada. For each project, the SEL has collected such

detailed information as resource data, error data, component

information, methodology, and project characteristics, so that

the SEL could study the evolution of the use of Ada itself and

the actual characteristics of the Ada development process

(Reference 3).

Analysis of the Ada projects has led personnel to document

lessons learned during the development of Ada projects

(References 4 through 7). These lessons have provided valuable

insight into the impact of Ada, especially in the following

areas:

F. McGarry
NASA/GSFC
I of 33

. The impact of Ada on the software development process,

that is, the impact Ada has on such measures as productivity,

reliability, and maintainability•

• The impact of Ada over time, as shown by the differences

between the first, second, and third Ada projects.

. The use of Ada and Ada features as the development environ-

ment gains more experience in using Ada.

4. The timeframe for realizing the benefits of using Ada.

i.i ADA PROJECTS STUDIED (Chart 2)

Ada use within the FDD began in January 1985 with the GRODY

project. As part of the preparation for developing this system,

personnel first participated in a practice Ada project by

implementing an electronic mail system (EMS). These two projects

actually represent a first Ada experience.

After the GRODY project was well under way, two new Ada simulator

projects for the GOES satellite began. GOADA, the dynamics

simulator, and GOESIM, the telemetry simulator, collectively

represent a second major experience with Ada. They are

considered second projects because (I) some team members had

previous experience in developing systems in Ada and (2) these

two projects could draw on lessons learned from GRODY. Not only

were the staffing profiles of the two GOES simulator teams

different from the GRODY team, but the two GOES teams began using

additional software tools available within the DEC Ada

development environment.

F. McGarry
NASA/GSFC
2 of 33

Late in 1987 and 1988, two more projects, UARSTELS and Build 4 of

FDAS began; these projects represent a third distinct Ada

experience. Currently, two more Ada projects are in their early

stages: EUVEDSIM and EUVETELS, but these projects are very early

in their lifecycles and are not yet available for study.

1.2 PROJECT STATUS AND CHARACTERISTICS (Chart 3)

All totaled, Ada has been used on eight projects in the flight

dynamics area. Two projects (EMS and GRODY) are completed; three

(GOADA, GOESIM, and FDAS) are well into system testing; and one

(UARSTELS) is in the implementation phase. The other two

projects (EUVEDSIM and EUVETELS) are in the early requirements

analysis phase. These projects range from nearly 6K to 163K SLOC

in size, where SLOC is total source lines of code including

comments, blanks, newly developed code, and reused code. These

projects have required or are expected to require from 4 to 36

months to complete and had from three to seven people working on

them. Although GRODY lasted for 36 months, it should be noted

that most personnel on this project did not work fulltime on its

development. The small EMS project could have been completed

by 2 or 3 people; but since it was part of the Ada training for

the GRODY project, all GRODY developers participated in some part

of the EMS project.

2.0 ADA EVOLUTION

2.1 TEAM EXPERIENCE AND DEVELOPMENT ENVIRONMENT (Chart 4)

F. McGarry
NASA/GSFC
3 of 33

Of the eight Ada projects currently under way, six projects have

progressed far enough to be studied: EMS, GRODY, GOADA, GOESIM,

FDAS, and UARSTELS. All six of the projects studied have been

staffed with personnel with a similar level of software develop-

ment experience, an average of 4 to 5 years. Except for UARSTELS,

each project also had personnel with a similar level of experi-

ence in the application. To date, the SEL has not observed any

impact due to differences in team experience between projects.

It is also too early to observe any differences in the effect of

varied levels of Ada experience on project development. The

number of people who are formally trained in Ada and/or the

number of those who have been on previous Ada projects is still

too small. Only the first Ada projects have been completed.

Some personnel on those projects have contributed to current,

ongoing projects; however, there are not enough people in the

environment, even on the most recent Ada projects, to signifi-

cantly change the ratio of experienced Ada personnel to those

with no Ada experience.

The use of tools has evolved somewhat from the first Ada

projects. The practice Ada project (EMS) had only rudimentary

tools available (compiler, linker, editor). GRODY made use of

the DEC symbolic debugger (SD), and the Configuration Management

System (CMS). All subsequent Ada projects are using these tools

as well as the Language Sensitive Editor (LSE). Project person-

nel have also developed some additional tools in house to create

package bodies and templates for the associated subunits they

need to develop.

F. McGarry
NASA/GSFC
4 of 33

2.2 SOFTWARE CHARACTERISTICS (Chart 5)

Traditionally, software size has been described in terms of the

lines of code developed for the system• However, software size

can be expressed by many other measurements (Reference 8),

including

i. Total physical lines of code (carriage returns)

2. Noncomment/nonblank physical lines of code

, Executable lines of code (ELOC) (not including type

declarations)

• Statements (semicolons in Ada, which include type

declarations)

Chart 5 describes the size of the Ada projects in the flight

dynamics area using these four measurements• The FORTRAN

project, GROSS, was also included in the summary for comparison.

The GROSS project is the FORTRAN implementation of the GRODY

project, and the GRODY/GROSS comparison has been detailed in

previous papers. Because the GOESIM and UARSTELS projects are

both telemetry simulators, they are also very similar in terms of

their functionality• These two Ada projects are estimated to be

between 75 and 78 thousand lines of code (KSLOC). In comparison,

a typical telemetry simulator in FORTRAN consists of

approximately 28 KSLOC.

Unless one counts only Ada statements, these figures tell us that

the use of Ada results in many more lines of code than the use of

FORTRAN. The increase in lines of code is not necessarily a

F. McGarry
NASA/GSFC
5 of 33

negative result. Rather, it is simply that the size of the

system implemented in Ada will be larger than an equivalent

system in FORTRAN. It is also clear that a precise definition is

needed of what is a line of code in Ada and what code is included

in that measurement.

Throughout the years of developing similar systems in FORTRAN in

the flight dynamics area, the average level of software reuse has

been between 15 and 20 percent (Reference 9). FORTRAN projects

that attained a 35 percent or higher level of reuse of previously

developed code are rare. After the first Ada project and with

only 5 to 6 years of maturing in the environment, Ada projects

have now achieved a software reuse rate of over 30 percent. This

is already greater than the typical FORTRAN project. The

UARSTELS project is expected to consist of more than 40 percent

reused code. This trend of increasing software reuse is very

promising.

2.3 LIFE-CYCLE EFFORT DISTRIBUTION (Chart 6)

The GROSS project followed the typical FORTRAN life-cycle effort

distribution (Reference I0). Specifically, a small amount (8

percent) of the total effort expended on the project was spent

during the pre-design or requirements analysis phase of the

project; 27 percent of the effort was spent during the design

phase, 40 percent during the code implementation phase; and 25

percent during the system testing phase. For the Ada projects,

significant changes to the life cycle have not yet been observed.

However, the Ada life cycle is changing slightly with each

project and may soon show a different life cycle than that

expected for a FORTRAN project. The life cycles for the second

and third Ada projects are shifting slightly to show more design

F. McGarry
NASA/GSFC

6 of 33

time required with less system test time.

As the Ada environment matures and the SEL learns more about Ada,

the life cycle is expected to continue shifting in the direction

that the early literature has reported (Reference ii): more time

spent in the design phase and less time in the system test phase.

FORTRAN projects could assume the reuse of the life cycle based

on past experience. This life cycle cannot be automatically

reused in Ada, and more study is needed to determine the duration

and products of each phase of an Ada project.

With the current projects, the SEL has not observed significant

changes to the life-cycle phases. However, effort by phase is

time driven. The SEL also collects effort data by activity

across all phases. With this data the amount of effort spent on

such activities as design, coding, and testing is very different

than the distribution of effort on activities for FORTRAN

projects. Much more time is spent on design for the Ada

projects, but more analysis is still needed in this area.

2.4 ADA COST/PRODUCTIVITY (Chart 7)

Discussions on Ada productivity are somewhat confusing because so

many interpretations exist of software size measures in Ada.

Depending on the measurement used and an individual's

inclination, one could determine that Ada is either as good or

not as good as FORTRAN. Using the total lines of delivered code

as a measure, the first, second, and third Ada projects show an

improving productivity over time, and they show a productivity

greater than FORTRAN. However, considering only code statements

(excluding all comments and continued lines of code), the results

are different. An increasing productivity trend remains in the

F. McGarry
NASA/GSFC
7 of 33

Ada projects over time, but the Ada projects have not yet

achieved the productivity level of FORTRAN projects.

Within the flight dynamics environment, many software components

are reused on FORTRAN projects. Since no Ada components existed

previously, the first Ada projects were, in fact, developing a

greater percentage of their delivered code than the typical

FORTRAN project. Based on a past study by the SEL and on

experience with FORTRAN projects, personnel concluded that reused

code costs around 20 percent of the cost of new code (ref 15).

The cost of reused code lies in the effort needed to test,

integrate, and document the reused code in the new system. Using

this estimate, reusability can be factored into software size by

estimating the amount of developed code. Because of the

differences in cost of new and reused code, developed code is

calculated as the amount of new code plus 20 percent of the

reused code. With software reusability factored in, the

productivity for developed statements on Ada projects is

approximately the same as that for FORTRAN projects.

The trends in Ada productivity are very positive. Again, lines of

code must be clearly defined when discussing productivity. Using

total number of lines as the measurement of software size, Ada

productivity was always greater than FORTRAN productivity.

However, due to the greater number of lines of an Ada project

compared to a similar FORTRAN project, this measure can be

misleading.

2.5 USE OF ADA FEATURES (Chart 8)

F. McGarry
NASA/GSFC
8 of 33

It is difficult to tell whether a given project really used the

Ada language to its fullest capacity. Different applications may

or may not need all the features available in Ada. However, in

an effort to achieve some measurement in the use of the features

available in the Ada language, the SEL identified six Ada

features to monitor: generic packages, type declarations,

packages, tasks, compilable PDL, and exception handling. The SEL

then examined the code to see how little or how much these

features were used.

The numbers of packages and type declarations were normalized to

the size of the system, and the number of generic packages was

divided by the total number of packages in the system. As seen

in chart 8, the use of four of these features has evolved over

time: generic packages, type declarations, packages, and

tasking. Compilable PDL and exception handling did not show any

trends. Perhaps it is too early to see results in these areas.

The average size of packages (in SLOC) for the first Ada projects

is much higher than the average size of packages for the second

and third Ada projects. This is due to a difference in the

structuring method between the first Ada projects and all

subsequent Ada projects (Reference 4). The first Ada projects

were designed with one package at the root of each subsystem,

which led to a heavily nested structure. In addition, nesting of

package specifications with package bodies was used to control

package visibility. Current Ada projects are utilizing the view

of subsystems described by Grady Booch (Reference 12) as an

abstract design entity whose interface is defined by a number of

separately compilable packages, and nesting of Ada packages is

limited to generic package instantiations.

F. McGarry
NASA/GSFC
9 of 33

The use of generic packages from the first to the current Ada

projects seems to be increasing. More tham a third of the

packages on current projects are generic packages. This higher

use of generics reflects both a stronger emphasis on the

development of verbatim reusable components and increased

understanding of how to effectively utilize generic Ada packages

within the flight dynamics area.

The use of strong typing within these software systems is also

increasing, as measured by the number of type declarations per

KSLOC. With experience, developers are more comfortable with the

strong typing features of Ada and are using its capabilities to a

fuller extent.

The use of tasking shows the most dramatic evolution over time for

any particular Ada feature in the flight dynamics environment;

its use has decreased markedly. The first Ada project, GRODY,

contained eight tasks. However, from lessons learned on the

GRODY project, personnel on subsequent Ada dynamics simulator

projects have reduced that number to four tasks. Current

telemetry simulator projects require no tasks at all. In the

area of tasking, experience has shown that extensive use of this

Ada feature is not appropriate for many applications. Although

more extensive use of tasking might be very appropriate for other

applications, the use of this Ada feature has definitely changed

as project personnel have learned to use tasking only in those

situations that are appropriate.

2.6 RELIABILITY, ERROR/CHANGE RATE AND CHARACTERISTICS (Charts 9

and i0)

F. McGarry
NASA/GSFC
10 of 33

The SEL measures software reliability by the number of changes or

error corrections made to the software. For Ada projects,

software error and change rates show a very positive trend. While

it is too early to observe a definite difference from the FORTRAN

rates, the reliability of the Ada projects is at least as good as

that of FORTRAN projects. The error and change rates on the Ada

projects are also declining over time, a promising trend. The

types of errors also show an evolution from first through third

Ada projects.

On a typical FORTRAN project, design errors amount to only 3

percent of the total errors on the project. For the first and

second Ada projects, 25 to 35 percent of all errors were

classified as design errors, a substantial increase. However,

for the third Ada project, design errors are dropping signifi-

cantly and are estimated to be approximately 7 percent. This

rate is close to what is experienced on FORTRAN projects and

clearly shows a maturation process with growing expertise in Ada.

Much of the literature on Ada reports that the use of Ada should

help reduce the number of interface errors in the software

(Reference 13). In our FORTRAN environment, about one-third of

all errors on a project are interface errors. On our first and

second Ada projects, the number of interface errors was not

greatly reduced. Around one-fourth of the errors were interface

errors. However, with current projects, the SEL is now seeing

the expected results: interface errors are decreasing.

"Errors due to a previous change" is a category of errors that

was caused by a previous modification to the software. The first

Ada project showed a large jump in the number of these errors

compared to those using FORTRAN. However, all subsequent Ada

F. McGarry
NASA/GSFC
11 of 33

projects show a rate for "errors due to a previous change" very

similar to the FORTRAN rate. Many things probably contributed to

this initial jump in the error rate: inexperience with Ada,

inexperience with Ada design methodologies, and a nested software

architecture that made the software much more complex. Again,

the error profile is decreasing with the maturity of the Ada

environment.

3.0 OVERALL OBSERVATIONS ON THE IMPACT OF ADA (Chart ii)

In summary, many aspects of software development with Ada have

evolved as our Ada development environment has matured and our

personnel have become more experienced in the use of Ada. The

SEL has seen differences in the areas of cost, reliability,

reuse, size, and use of Ada features.

A first Ada project can be expected to cost about 30 percent more

than an equivalent FORTRAN project (Reference 14). However, the

SEL has observed significant improvements over time as a develop-

ment environment progresses to second and third uses of Ada.

The reliability of Ada projects is initially similar to what is

expected in a mature FORTRAN environment. However, with time,

one can expect to gain improvements as experience with the

language increases.

Reuse is one of the most promising aspects of Ada. The proportion

of reusable Ada software on our Ada projects exceeds the propor-

tion of reusable FORTRAN software on our FORTRAN projects. This

result was noted fairly early in our Ada projects, and our exper-

ience shows an increasing trend over time.

F. McGarry
NASA/GSFC
12 of 33

The size of an Ada system will be larger than a similar system in

FORTRAN when considering SLOC. Size measurements can be

misleading because different measurements reveal different

results. Ratios of Ada to FORTRAN range from 3 to 1 for total

physical lines to 1 to 1 for statements.

The use of Ada features definitely evolves with experience. As

more experience is gained, some Ada features may be found to be

inappropriate for specific applications. However, the lessons

learned on an earlier project play an invaluable part in the

success of later projects.

OF POOR QUALITY

F. McGarry
NASA/GSFC
13 of 33

REFERENCES

,
Software Engineering Laboratory (SEL), SEL-85-002, Ada

Traininq Evaluation and Recommendations, R. Murphy and

M. Stark, October 1985

2. F. McGarry and R. Nelson, "An Experiment with Ada--The GRO

Dynamics Simulator," NASA/GSFC, April 1985

3. SEL, SEL-81-104, The Software Engineerinq Laboratory,

D. Card, F. McGarry, G. Page, et al., February 1982

4. --, SEL-88-003, Evolution of Ada Technology in the Fliqht

Dynamics Area: Design Phase Analysis, K. Quimby and

L. Esker, 1988

5. --, SEL-88-001, System Testinq of a Production Ada Project:

The GRODY Study, J. Seigle, L. Esker, and Y. Shi, November

1988

, C. Brophy, S. Godfrey, et al., "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedinqs of

the sixth National Conference on Ada TechnoloqY, 1988.

.

•

SEL, SEL-87-004, Assessing the Ada Desiqn Process and Its

Implications: A Case Study, S. Godfrey and C. Brophy,

July 1987

D. Firesmith, "Mixing Applies and Oranges: Or What Is an

Ada Line of Code Anyway?," Ada Letters, September/October

1988

F. McGarry
NASA/GSFC
14 of 33

OF PU_,a _:;...,',,'?"f

, Computer Sciences Corporation (CSC), IM-88/083(59 253),

Software Reuse Profile Study of Recent FORTRAN Projects in

the Fliqht Dynamics Area, L. Esker, January 1989

i0. SEL, SEL-81-205, Recommended Approach to Software

Development, F. McGarry, G. Page, et al., April 1983

ii. V. Castor and D. Preston, "Programmers Produce More With

Ada," Defence Electronics, June 1987

12. G. Booch, Software Engineerinq With Ada. Menlo Park, CA:

Benjamin/Cummings Publishing Company, 1983

13. The MITRE Corporation, Use of Ada for FAA's Advanced

Automation System (AAS), V. Basili et al., April 1987

14. B. Boehm, "Improving Software Productivity," Computer,

September 1987

15. SEL, SEL-84-001, Manaqer's Handbook For Software

Development, W. Agresti, F. McGarry, et al., April 1984

F. McGarry
NASA/GSFC
15 of 33

° !

THE VIEWGRAPH MATERIALS

FOR THE

F. MCGARRY PRESENTATION FOLLOW

/ _. INTENTiONAELI£

t_
"0

I1_
OO

>-
rrrn

09 :::)
,,,0
<z

m

_j Iii

U.I

rro
t.U I_.

_0
0
0

0
LL.
O9
0
<
O0
<
Z

E i ? INTENTIONAkLYBLA/

'r-

F. McGarry 8
NASA/GSFC

O4

19 of 33 o

(5

C,%o

m

_,1
i

rn
,<
Z

F. McGarry

NASA/GSFC

20 of 33

8

13

,-I

_4

¢.J

O
/

i

>
i

a

/

Z
>..
0

i

Z
m

O'J

0

0
OC
I1.

"0

m

0
coo
a_
LU_

:_LO

uJ Cb

b..,. ww

I| I "_J

t_
"O
<

UJ

n

I--
121
er"

m

m
UJ ¢'_

LIJ _,,,,_,

CPI UJ

<
LU

I-.
a
Z
CM

<
LIJ

m

I---
I--

O

v _p

r- _---1

g, m
v

o

O

b_

u_

F. McGarry r..
NASA/GSFC ,-
21 of 33

F. McGarry
NASA/GSFC
22 of 33

o

cM

03

<

r..)

Iz >- > >_ >_ >_

_ Z >- >- >- >- >-

m
_ _ z z >- >- >.- >-

w O
O

O

o

<> _
.-i I.iJel

X zwOO

n X

111 <w
I-- I--

0
111

0
n-
O_

w_
111
_o

v- 0,1 _ 0 C'_ 7-/,7

>_ < _ w-- I--
¢7 ¢7 CO Or) Or)
0 < w < ¢v"
ev 0 0 a <

<..J
W<l:
I--*
-IK -to

F. McGarry _.
NASA/GSFC ,-

Ol23 of 33

k)

F. McGarry
NASA/GSFC
24of 33

0
W

_ z

_- zz w _
c_
n

u7

E4
P_
<
P_
r_

CO
I

w_ 8_

It.

o

z o
iI co w_"

W Z ..jr,"
l_l o o w

O. a (D _-

o_

_o

I--
CO
W
l--
a
Z
W

a
Q

7
W

g
a

mo
COO

ZZ
_Oo
I--._

12C--

u.. rr
u_<
LII a-
•to .t_

b.-

F. McGarry
NASA/GSFC ,-
25 of 33 c_

kD

o

o _ o to

(/) l,

Z

F. McGarry q

NASA/GSFC
26 of 33 o

p_
<

o

tO _ t'_ ¢Xl T--

o

--
t_
"0

0

0 0 o 0

o ',_

...I

co

I l_ I

°
1,

< o
I.,U U.I

0 0

__ <

_ Z

F. McGarry q
NASA/GSFC _

27 of 33

OO

t_
,¢

•_ Qo o
a _ ,--
I.!.

Ill
m

W o_
0
0

0

o

o _

5
9 o
_ 9

W
0

"r
0

v

n-
O

w

F. McGarry
NASA/GSFC
28 of 33

III

I---
o')
< er

U.I

<_
oo

g
d

_d

o
II

0
0
._1

o

<

o

E_

<

L)

F. McGarry o
NASA/GSFC
29 of 33 ,-'

F. McGarry
NASA/GSFC
30 of 33

Z

Z--

o_ _ =o_,,,o_
o-Z

o W _ zm _ _ _-
zz mz _ o.

>..o.o _-_
__ <_ _ >°w,,,

_7-. -7 ,,=,,,,
>_ u_zo_ "'=_ _ _ _oo _'"' -_ z<__> o o__8

o ,q: _ ---_ _ _o 7
_ • • • • • • • • • •

LAI ,,,

LU
o,

_D

w u_
_- _ _ 0
09 _.I D W 111
0 111 W N

E_

<
=

C_)

60

o z
wO

w<
_..0

x-_W_.

>..o<

--W

mrr

z_
<_._ <
Toh _
On"

<

_z._l
• • •

F. McGarry
NASA/GSFC _
31 of 33 G

(-q

E.t

,<

r..)

t_
"ID
<

Id.I
z;
i---

or-
t_
v

t_

O9
,,,
I

I---

Z

v
I.kl
i--- t_

A

nrnr
(50

v

II.I

F. McGarry
NASA/GSFC
32 of 33

tt3

O'J
t6

O9
I'r"
O

fr"
I.U

Z

CO
ILl
a

cO

O_

CO
O_

+_x
I.l_

X

O>-
I--u)
>-._
OOLU

. n"
LLI

CO

ur)

04

_6

CO

00
QZ
0

13C
LU

Ill
0

It.
n"
LLI
I--
Z

c_I

o,I

OIII

LU z

a-I-
0

2_o
rr>
t.UW

rr
_a.

"1-
i-"

FT" Z

O_

I---._1

.<_ < tt.

o

<

u

c0 co co m _. o

It.

'.-- I I

o,,,Oa.

0 r_O v- I_. ¢0

g

-J -J 0 ILl -_
k- W< w_ z < >I'-- _li.I

0 w 0 _ w
I-- a Z Z CO C_

I.I_

8B_

__za-

o _

,-4

(.)

O
O

F. McGarry
NASA/GSFC _
33 of 33 ca

UMIACS-TR-88-92
CS-TR-2158

December, 1988

Towards A Comprehensive Framework for Reuse:t Z"

A Reuse-Enabling Software Evolution Environment .,c L_" ¢d_"

V. R. Basili and H.D. Rombach 'F/[_"

Institute for Advanced Computer Studies ["_]

Department of Computer Science
!

University of Maryland
College Park, MD 20742

ABSTRACT

Reuse of products, processes and knowledge will be the key to enable the

software industry to achieve the dramatic improvement in productivity and quality re-

quired to satisfy the anticipated growing demands. Although experience shows that

certain kinds of reuse can be successful, general success has been elusive. A software

life-cycle technology which allows broad and extensive reuse could provide the means

to achieving the desired order--of-magnitude improvements. This paper motivates and

outlines the scope of a comprehensive framework for understanding, planning, evaluat-

ing and motivating reuse practices and the necessary research activities. As a first step

towards such a framework, a reuse--enabling software evolution environment model is

introduced which provides a basis for the effective recording of experience, the gen-

eralization and tailoring of experience, the formalization of experience, and the (re-)use

of experience.

t Research for this study was supported in part by NASA grant nSG-5123, ONR grant N00014--87-K-0307 and Airmics grant

DE-AC05--OR21400 to the iUniversity of Maryland. _ V. Basili

Univ. of MD
l of 47

TABLE OF CONTENTS:

IlNTRODUCTION ...

2 SCOPE OF A COMPREHENSIVE REUSE FRAMEWORK

3 A REUSE-ENABLING ENVIRONMENT MODEl ..

3.1 Implicit Learning and Reuse ...

3.2 Explicit Modeling of Learning and Reuse ..

3.2.1 Recording Experience ...

3.2.2 Generalizing & Tailoring Existing Experience Prior to its Potential

Reuse ..

3.2.3 Formalizing Existing Experience Prior to i_s Potential Reuse

3.2.4 (Re-) Usiag Existing Experience ...

4 TAME: AN INSTANTIATION OF TtIE REUSE-ENABLING ENVIRON-

MENT MODEI ...

5 CONCLUSIONS ...

6 ACKNOWLEDGEMENTS ..

7 REFERENCES ...

7

8

10

11

12

15

16

17

20

21

21

V. Basili
Univ. of MD
2 of 47

1. INTRODUCTION

The existing gap between the demand and our ability to produce high quality software

cost-effectively calls for improved software life-cycle technology. A reuse-enabling software life-

cycle technology is expected to contribute significantly to higher quality and productivity. Qual-

ity can be expected to improve by reusing proven experience in the form of products, processes

and knowledge. Productivity can be expected to increase by using existing experience rather than

developing it from scratch whenever needed.

Reusing existing experience is the key to progress in any area. Without reuse everything

must he re-learned and re-created; progress in an economical fashion is unlikely. During the

evolution of software, we routinely reuse experience in the form of existing products (e.g. generic

Ada components, design documents, mathematical subroutines), processes (e.g., design inspections

methods, compiler tools), and domain-specific knowledge (e.g., cost models, lessons learned, meas-

urement data). Most reuse occurs implicitly in an ad-hoc fashion rather than as the result of

explicit planning and support. While reuse is less institutionalized in software engineering than in

other engineering disciplines, there exist some successful cases of reuse, i.e. product reuse. Reuse in

software engineering has been successful whenever the reused experience is self-describing, e.g.,

mathematical subroutines, or the stability of the context in which the experience is reused com-

pensates for the lack of self-description, e.g., reuse of high-level designs across projects with simi-

lar characteristics regarding the application domain, the design methods, and the personnel. In

software engineering, the potential productivity pay-off from reuse can be quite high since it is

inexpensive to store and reproduce software engineering experience compared to other engineer-

ing disciplines.

The goal of research in the area of reuse is the achievement of systematic methods for effec-

tively reusing existing experience to maximize quality and cost benefits. Successful reuse depends

on the characteristics of the candidate reuse objects, the characteristics of the reuse process

* Tile term "evolution" is used in this paper to comprise the entire software life-cycle (development and maintenance).

V. Basili
Univ. of MD
3 of 47

itself, and the technical and managerial environment in which reuse takes place. Interest in

reusability has re-emerged during the last couple of years [4, 9, 11, 12, 13, 14, 15, 16, 17, 19,

90, 21], due in part to the stimulus provided by Ada and in part to our increased understanding

of the relation between software processes and products.

Our increased understanding tells us that in order to improve quality and productivity via

reuse we need a framework which allows (a) the reuse of all kinds of software engineering experi-

ence, i.e., products, processes and knowledge, (b) the better understanding of _he reuse process

itself, and (c) the better understanding of the technical and managerial evolution environment in

which reuse is expected to be enabled.

This paper presents a reuse-enal)ling software evolution environment model, the fir._t step

towards a comprehensive framework for understanding, planning, evaluating and mot.ivating

reuse practices and the necessary research activities. Section 2 motivat_es the necessary scope of a

comprehensive reuse framework and the important role of a reuse-enabling soft, ware evolution

environment model within such a framework. Section 3 introduces the reuse-enabling software

evolution environment model and discusses its ability to explicitly model the recording of experi-

ence, the generalization and tailoring of experience, the formalization of experience, and the (re-}

use of experience. The'I'?dME model, aspecific instantiation of the reuse-enabling software evo-

lution environment model, is presented in Sectloa 4. This specific instantiation is used to more

specifically describe the integration of _he recording and (re-)use activities into an improvement

oriented software evolution process.

Before we proceed, we define some crucial terms that will be used in this paper so the reader

understands what we mean by them in the software context. We have tailored Webster's general

definitions of these terms to the specific domain of software evolution. Improvement means

enhancing a software process or product with respect, to quality and productivity. Learning is the

act,ivity of acquiring experience by instruction (e.g., construction) or study (e.g., analysis). Reuse

is the activity of repeatedly using existing experience, after reclaiming it, with or without

V. Basili

Univ. of MD

4 of 47

modification. Feedback means returning to tile entry point of some process armed with the

experience created during prior executions of the process. We use the expression experience base

to mean a repository containing all kinds of experience. An experience base can be implemented

in a variety of ways depending on the type of experience stored. An experience base may consist

of one or more of the following: traditional databases containing factual pieces of information,

information bases containing structured information, and knowledge bases including mechanisms

for deducing new information [5, 24].

2. SCOPE OF A COMPREHENSIVE REUSE FRAMEWORK

Reuse in most environments is implicit and ad-hoc. When it is explicit or planned, it

predominantly deals with the reuse of code. In Section l, we expressed our belief that effective

reuse technology needs to be based on (a) the reuse of products, processes and knowledge, (b) a

good understanding of the reuse process itself, and (c) a good understanding of the reuse-enabling

software evolution environment.

To better justify these beliefs, we will describe and discuss the reuse practice in the

Software Engineering Laboratory (SEL) at NASA Goddard Space Flight Center !2, 18]. This is

an example where reuse has been quite successful at a variety of levels, albeit predominantly

implicit. Ground support software for satellites has been developed for a number of years in

FORTRAN. Reused experience exists in the people, methods, and tools ms well as in the program

library and measurement database.

To explain reuse in this environment we must first explain the management structure.

There are two levels of management involved in the technical project management. The second

level managers (one from NASA and one from Computer Sciences Corporation, the contractor),

have been managing this class of projects for several years. Specific project managers are typi-

cally promoted from within the ranks, on either side, from the better developers on prior projects.

V. Basili
Univ. of MD
5 of 47

This providesa continuallearningexperiencefor themanagementteam. Technicalreviewand

discussionis informalbut commonplace.Lessonslearnedfromexperienceareusedto improve

management'sability to monitorandcontrolprojectdevelopments.

Theorganizationalstructurehasbeenrelativelyconstantfrom projectto project There

havebeenminorvariationsdueto improvementsinsuchthingsa.smethodsandtoolswhichhave

evolvedfrom experienceor beenmotivatedthe literatureand verifiedby experimentaldata

analysisonpriorprojects.

The basicsystemshavebeenrelativelyconstant.This permitsreuseof the application

knowledgeaswell_ therequirements,anddesign.For example the requirements documents are

quite mixed with regard to the level of specificity. In some places they are quite precise but in

other cases the are very incomplete, relying on the experience of the people from prior projects.

Requirements documents have phrases similar to the following: Capability X for new satel-

lite $2 is similar to capability X for satellite SI except for the following... This implicitly pro-

rides reuse of prior requirements documents as well as implicitly allows for reuse of prior design

documents and code.

Systems within a class, all have a similar design at the top level and the interfaces among

_ubsystems are relatively well defined and tend to be relatively error free. Design is implicitly

reused from system to system as specified by the experienced high level managers.

Reuse at the code level is more explicit. The software development process used is a reuse

oriented version of the waterfall model. The coding phase begins by seeding the code library with

the appropriately specified elements from the appropriate prior projects. These code components

are then examined for their ability to be reused. Some are used as is, others modified minimally,

others modified extensively, and yet others are eliminated and judged easier to develop from

scratch. This is a reuse approach that has evolved over time and has been quite effective.

A variety of tools have evolved that are quite application specific. These include everything

from tools that generate displays needed for testing to application specific system utilities.

V. Basili
Univ. of MD
6 of 47

Knowledgeaboutthesetoolshasbeendisseminatedbyguidancefrommoreseniormembersof the

developmentteam.

TheSELenvironmentis a goodexampleof strongreuseat a varietyof levels,in a variety

of ways as part of the software development process. There has been a pattern of learning and

reusing knowledge, processes and products. The use of the measurement database has helped

with project control and schedule as well as quality assessment and productivity [2, 18]

NASA is now considering changing to Ada. Several Ada projects have already been com-

pleted. This has involved an obvious loss in the reuse heritage at the code level, as was antici-

pated. But it has also involved a less obvious and unexpected loss of reuse at the requirements

and design level, in the organizational structure, and even in the application knowledge area.

The initial impact of Ada was staggering because of the implicit, rather than explicit,

understanding of reuse in the environment. This understanding of reuse needs to be formalized.

Based upon the concept that reuse is more than just reuse of code and that it needs to be

explicitly modeled, we need to reconsider how we measure progress in reuse. The measurements

currently used in the SEL are based upon lines of code reused from one project to another. Given

this view, progress may not be related at all to the lines of code reused. We need to measure the

effects of reuse on the resources expended in the entire software life cycle and on the quality of

the products produced using an explicit reuse oriented evolution model. In fact, the process

should allow us measure for any set of reuse-related goals [3, 4, 8, 10]. Changing our models and

our metrics will help us to better understand the effects of the traditional reuse practices and

compare them with the effects of an explicit reuse oriented reuse mode!.

In summary, we believe that a comprehensive reuse framework needs to include (a) a reuse-

enabling software evolution environment model, (b) detailed models of reuse and learning, and (c)

characterization schemes for reuse and learning based upon these models.

V. Basili
Univ. of MD
7 of 47

3. A REUSE-ENABLING ENVIRONMENT MODEL

In thepast,reusehasbeendiscussedindependentof thesoftwareevolutionenvironment

We believereusecanonly bean effectivemechanismif it is viewedas an integral part,

paired with learning,of a reuse-enablingsoftwareevolutionenvironment.None of the

traditionalengineeringdisciplineshaseverintroducedthereuseof buildingblocksas indepen-

dentof the respectivebuildingprocess.For example,in civil engineeringpeoplehavenot

created"reuselibraries"containingbuildingblocksof all shapesand structures,andthentried

to usethemto build bridges,townhouses,high-risesand cottages. Instead,they deviseda

standardtechnologyfor buildingcertain types of buildings (eg, town houses) through a long pro-

cess of understanding and learning. This allowed them to define the needs for certain standard

building blocks at well-defined stages of their construction process. In the software arena we

have not followed this approach.

If we accept the premise that effective reuse requires a good understanding of tile environ-

ment in which it is expected to take place, then we must model reuse in the context of a reuse-

enabling software evolut, ion environment. Such a context will allow us to learn how to reuse

better. The ultimate expectation is that such improvement would lead to an ever increasing

usage of generator-technology during software evolution. The ability to automate the generation

of products from other products reflects the ultimate degree of understanding the underlying con-

struction processes. Automated processes are easy to reuse. For example, in building compiler

front-ends, we rarely reuse components of other compilers; instead, we reuse the compiler genera-

tots which automate the entire process of building compiler front-ends from formal language

specifications.

In Section a.l we discuss how learning and reuse implicitly occur in the context of tradi-

tional software evolution environments. In Section a.2, we discuss how learning and reuse can be

explicitly modeled in the context of a reuse-enabling software evolution environment.

V. Basili
Univ. of MD
8 of 47

3.1. Implicit Learning and Reuse

During a workshopon "Requirementsfor SoftwareDevelopmentEnvironments",

heldat the Universityof Marylandin 1985,a view of a softwareevolutionenvironmentwas

proposedthat consistedof an informationsystemandthreeinformationproducersandconsu-

mers:people,methods,andtoolsI22]. The informationsystemis definedbya softwareevolu-

tion processmodeldescribingthe information, the communicationamongpeople,methods

andtools,andtheactivitysequencesfor developingandmaintainingsoftware.

Thetraditionalsoftwareevolutionenvironmentmodelin Figure1 is a refinementof this

earliermodel.

people methods tools

A A A

I I I

vt v v

I

A

Software Evolution Process

A

I

I

' T

- products

- management plans

- schedules

- project data

...

°.°

PROJECT D zTABASE
I

I

I

!

I

I

I

I

I

Figure 1: Traditional (non-reuse oriented) Software Evolution Environment Model

V. Basili
Univ. of MD
9 of 47

Thepurposeof thesoftwareevolutionprocessis to produce output products, e.g., design

documents, code, from input product, s, e.g., requirement documents. People execute this process

manually or by utilizing available methods and tools. These methods and tools can be under the

control of a project database. All or part of the information produced during this process is

stored in a project database, e.g., product, s, plans such as management plans or schedules, pro-

ject data.

Typically, support for such a traditional software evolution environment model includes a

project database and means for the interaction of people with methods, tools, and the project

database during software evolution. The experience of people, as well _ some of the methods

and tools, is usually not controlled by the project database. As a consequence, this experience is

not owned by the organization (via the project database) but rather owned by individual

human beings and lost entirely after the project has been completed.

Although the ideas of learning and reuse are not explicitly reflected in the traditional

software evolution environment model, they do exist implicitly. The experience of the people

involved in the software evolution process and the experience encoded in methods and tools is

reused. In many cases, previously developed products are reused as input products. In the same

way, products developed during one activity of the evolution process can be reused in subse-

quent activities of this same process. People learn (gain experience) from performing the activi-

ties of the evolution process. Another form of implicit learning occurs whenever)roducts, plans,

or project data are stored in the project database.

The basic problem in this traditional environment model is not that learning and reuse

can not occur, but that learning and reuse are not explicitly supported and only because of indi-

vidual efforts or by accident.

V. Basili
Univ. of MD
10 of 47

3.2. Explicit Modeling of Learning and Reuse

Systematic improvement of software evolution practices requires a reuse-enabling environ-

ment model which explicitly models learning, reuse and feedback activities, and integrates them

into the software evolution process. Figure 2 depicts such a reuse-enabling environment model.

R

._:.. ,k ?%: . " :

GE ER_L"

• FB /

EXPERIENCE BASE

Figure 2: Reuse-Enabling Software Evolution Environment Model

All the potentially reusable experience, including software evolution methods and tools, are

under the control of an experience base. Improvement is based on the feedback of existing experi-

ence (labeled with "FB" for reuse in Figure 2). Feedback requires learning and reuse. Systematic

learning requires support for the recording of experience (labeled with "R" for recording in Figure

V. Basili
Univ. of MD
11 of 47

2},theoff-line generalizingor tailoringof experience(labeledwith "G" and"T" for generaliz-

ing andtailoringin Figure 2), and the formalizing of experience (labeled with "F" for formalizing

in Figure 2). Off-line generalization is concerned with movement of experience from project-

specific to domain-specific and general; off-line tailoring is concerned with movement of experi-

ence from general to domain-specific and project specific. Off-line formalization is concerned

with movement of experience from informal to schematized and productized. Systematic reuse

requires support for (re-}using existing experience {labeled with "U" for use in Figure 2), and

on-line generalizing or tailoring of candidate experience (not explicitly reflected in Figure 2,

because it is assumed to be an integral part of the {re-)use activity).

Although reuse and learning are possible in both the reuse-enabling and the traditional

environment models, there are significant differences in the way experience is viewed and how

learning and reuse are explicitly integrated and supported. The basic difference between the

reuse-enabling model and the traditional model is that learning and reuse become explicitly

modeled and are desired characteristics of software evolution.

3.2.1. Recording Experience

The objective of recording experience is to create a repository of well specified and organ-

ized experience. This requires a precise description of the experience to b_ recorded, the design

and implementation of a comprehensive experience base, and effective mechanisms for collecting,

validating, storing and retrieving experience We replace the project database of the traditional

environment model by an the more comprehensive concept of an experience base which is

intended to capture the entire body of experience recorded during the planning and execution of

all software project,s within an organization. All information flows between the software evolu-

tion process and the experience b_e reflecting the recording of experience are labeled with "R" in

Figure 2.

* The attributes "on-line" and 'ofr-line" indicate whether the corresponding activities are performed as part or indepen-
dent of any p_rtieular sortware evolution project,

V. Basili
Univ. of MD
12 of 47

Examplesof recordingexperienceincludesuchactivitiesas (a) storingof appropriately

documented,cataloguedand categorizedcodecomponentsfrom prior systemsin a product

library,(b) cataloguingof a setof lessonslearnedin applyinga newtechnologyin a knowledge

base,or (e)capturingof measurementdatarelatedto thecostof developingasystemin a meas-

urementdatabase.

In the SELexampleof Section2, codefrom prior systemsis availableto the program

libraryof the currentprojectalthoughnocodeobjectrepositoryhasbeendeveloped.Measure-

mentdatacharacterizinga broadnumberof projectaspectssuchasthe projectenvironment,

methodsandtoolsused,defectsencountered,andresourcesspentareexplicitlystoredin theSEL

measurementdatabase[2,8, 18]. Requirementsanddesigndocumentsaswellas lessonslearned

aboutthe technicaland managerialimplicationsof variousmethodsand toolsare impliciely

storedin humansor onpaper.

Todayit is possible,but notcommon,to findproductlibraries.It is evenlesscommonto

recordprocess-relatedexperiencesuchasprocessplansor datawhichcharacterizethe impactof

certainmethodsandtoolswithinanorganization.Thereexisttwomainreasonswhyweneedto

recordmoreprocess-relatedexperience:(a) it is generallyhard to modifyexistingproducts

efficientlywithoutanyknowledgeregardingtheprocessesaccordingto whichtheywerecreated,

and(b) theeffectivereuseof process-relatedexperiencesuchasprocessplansor datacouldpro-

videsignificantlymoreleveragefor improvementthanjust thereuseof products.

3.2.2. Generalizing & Tailoring Existing Experience Prior to its Potential Reuse

The objective of generalizing existing experience prior to its reuse is to make a candidate

reuse object useful in a larger set of potential target applications. The objective of tailoring exist-

ing experience prior to its potential reuse is to fine-tune a candidate reuse object to fit a specific

task or exhibit special attributes, such as size or performance. These activities require a well-

documented cataloged and categorized set of reuse objects, mechanisms that support the

V. Basili
Univ. of MD
13 of 47

modificationprocess,andanunderstandingof the potentialtargetapplications.Generalization

andtailoringarespecificallyconcernedwithmovementacrosstheboundariesof the "generality"

dimension:from generalto domain-specificandproject-specificandviceversa.Objectivesand

characteristics are different from project to project, and even more so from environment to

environment. We cannot reuse past experience without modifying it to the needs of the current

project. The stability of the environment in which reuse takes place, as well as the origination of

the experience, determine the amount of tailoring required.

Examples of generalizing and tailoring experience include such activities as (a) developing a

generic package from a specific package, (b) instantiating a generic package for a specific type, (c)

generalizing lessons learned from a specific design technology for a specific application to any

design for that application or any application, (d) or parameterizing a cost model for a specific

environment.

In the SEL, requirements and design documents have implicitly evolved to be applicable to

all FORTRAN projects in the ground support software domain. Measurement data have been

explicitly generalized into domain-specific baselines regarding defects and resource expenditures

[2, 8, t81. Requirements and designs are implicitly tailored towards the needs of a new project

based on the manager's experience, and code is explicitly hand-modified to the needs of a new

project.

In general, recorded experience is project-specific. In order to reuse this experience in a

future project within the same application domain, we have to (a) generalize the recorded project

specific experience into domain specific or general experience and (b) then tailor it again.to the

specific characteristics of the new project. We distinguish between off-line and on-line generaliz-

ing and tailoring activities:

. Off-line generalizing nnd tailoring is concerned with increasing the reuse potential of exist-

ing process and product-related experience before knowing the precise reuse context (i.e., the

-project within which the experience is being reused). Off-line generalization and tailoring is

V. Basili
Univ. of MD
14 of 47

concernedwith movementacrosstheboundariesof thespecificitydimensionwithin theexperi-

encebase:fromgeneralto domain-specificandthento project-specific,andvisaversa.These

activitiesarelabeledwith "G" and"T" in Figure2. An exampleof off-linegeneralizationis

theconstructionof baselines.Theideais to useproject-specificmeasurementdata(e.g.,fault

profilesacrossdevelopmentphases)of severalprojectswithinsomeapplicationdomainandto

createtheapplication-domainspecificfaultprofilebaseline.Eachnewprojectwithin thesame

applicationdomainmightreusethisbaselinein orderto controlits developmentprocessasfar

as faults areconcerned.An exampleof off-line tailoring is the adaptationof a general

scientificparadigmsuchas"divideandconquer"to thesoftwareengineeringdomain.

• On-line tailoring and generalizingis concernedwith tailoringcandidateprocessand

product-relatedexperienceto thespecificneedsandcharacteristicsof a projectandthechosen

softwareevolutionenvironment.Theseactivitiesarenotexplicitlyreflectedin Figure2 because

theyareintegralpart of the(re-)useactivity. An exampleof on-linetailoringis theadapta-

tionof a designinspectionmethodto betterdetectthefault typesanticipatedin the current

project[6]. An exampleof on-linegeneralizationis the inclusionof projectspecificeffort data

froma pastprojectinto thedomainspecificeffortbaseline in order to better plan the required

resources for the current project. Obviously, this kind of generalization could have been per-

formed off-line too.

It is important to find a cost-effective balance between off-line and on-line tailoring and

generalization. It can be expected that generalization is predominantly performed off-line, tailor-

ing on-line.

A good developer is capable of informally tailoring general and domain specific experience

to the specific needs of his or her project. Performing these transformations on existing experi-

ence assumes the ability to generalize experience to a broader context than the one studied,

or to tailor experience to a specific project. The better this experience is packaged, the better

our understanding of the environment. Maintaining a body of experience acquired during a

V. Basili
Univ. of MD
15 of 47

numberof projectsisoneof _heprerequisitesfor learningandfeedbackacrossproiects.

A misunderstandingof the importance of tailoring exists in many organizations. These

organizations have specific development guidebooks which are of limited value because they "are

written for some ideal project" which "has nothing in common with the current project and,

therefore, do not apply" [231. All guidebooks (including standards such as DOD-STD-2167) are

general and need to be tailored to each project in order to be effective.

3.2.3. Formallrlng Existing Experience Prior to its Potential Reuse

The objective of formalizing existing experience prior to its potential reuse is to increase the

reuse potential of a candidate reuse object by encoding it. in more precise, better understood ways.

This requires models of the various reuse objects, notations for making the models more precise,

notations for abstracting reuse object characteristics, mechanisms for validating these models, and

mechanisms for interpreting models in the appropriate context. Formalization activities are con-

cerned with movement across the boundaries of the formality dimension within the experience

base: from informal to sehematized and then ;o productized. These activities are labeled with

"F" in Figure 2.

Examples of formalizing experience include such activities _ (a) writing functional

specifications for a code module, (b) turning a lessons learned document into a management sys-

rein that supports decision making, (c) building a cost model empirically based upon the data

available, (d) developing evaluation criteria for evaluating the performance of a particular

method, or (e) automating methods into tools.

In the SEL, measurement data have been explicitly formalized into cost models [1] and error

models enabling the better planning and control of software projects with regard to cost estima-

tion and the effectiveness of fault detection and isolation methods [2, 6, 8, 18]. Lessons learned

have been integrated into expert systems aimed at supporting the management decision process

Is, 24].

V. Basili
Univ. of MD
16 of 47

The more we can formalize experience, the better it can be reused. Therefore, we try not

only to record experience, but over time to formalize experience from entirely informal (e.g., con-

eepts), to structured or schematized (e.g., methods), or even to completely formal (e.g., tools).

The potential for misunderstanding or misinterpretation decreases as experience is described more

formally. To the same degree the experience can be modified more easily, or in the case of

processes, it may be executed automatically (e.g., tools) rather than manually (e.g., methods).

3.2.4. (Re-) Using Existing Experience

The objective of reusing existing experience is to maximize the effective use of previously

recorded experience during the planning and execution of all projects within an organization.

This requires a precise characterization of the available candidate reuse objects, a precise charac-

terization of the reuse-enabling environment including the evolution process that is expected to

enable reuse, and mechanisms that support the reuse of experience. We must support the (re-)use

of existing experience during the specification of reuse needs in order to compare them with

descriptions of existing experience, the identification and understanding of candidate, the evalua-

tion of candidate reuse objects, the possible tailoring of the reuse object, the integration of the

reuse object into the ongoing software project, and the evaluating of the project's success. All

information flows between the experience base and the software evolution process reflecting the

(re-)use of experience are labeled with "U" in Figure 2.

Examples of reusing experience include such activities as (a) using code components from

the repository, (b) developing a risk management plan based upon the lessons learned from apply-

ing a new technology, (e) estimating the cost of a project based on data collected from past pro-

jects, or (d) using a development method created for a prior project.

In the SEL, reuse needs are informally specified as part of the requirements document.

Matching candidate requirements and design documents are identified by managers who are

experienced in this environment. The evaluation of those candidate reuse objects is in part based

V. Basili
Univ. of MD
17 of 47

on humanexperienceand in part on measurementdata. Theyare tailoredbasedon the

application-domainknowledgeof thepersonnel.Theyareintegratedintoaverystableevolution

processbasedonhumanexperience.All thisreuseis implicitexceptfor thereuseof code,which

althoughexplicit,is informat_It couldonlybesuccessfulbecauseit evolvedwithina verystable

environment.Therecentchangefrom FORTRANto Adahasresultedin drasticchangesof this

environmentandasa consequenceto thelossin theimplicitreuseheritage.

Sincethe keyfor improvementof productsis alwaysimprovementof theprocesscreating

thoseproducts,weneedto put equalemphasison the reuseof productandprocessoriented

experience.Eventoday, we have examplesof retiseof processexperiencesuchas process

plans(standardssuchasDOD-STD-2167,managementplans,schedules)or processdata (error,

effort or reliabilitydatathat definebaselinesregardingsoftwareevolutionprocesseswithin a

specificorganization).In mostof thesecasestheactualuseof thisinformationwithin aspecific

projectcontextis notsupported;it is up to therespectivemanagerto find theneededinforma-

tion,andto makesenseoutof it in the contextof thecurrentproject.

4. TAME: AN INSTANTIATION OF THE REUSE-ENABLING ENVIRONMENT

MODEL

Theobjectiveof thereuse-enablingsoftwareevolutionenvironmentmodelof Section32 is

to explicitlymodelthe learningandreuse-relatedactivitiesof recordingexperience,generalizing

andtailoringexperience,formalizingexperience,and(re-)usingexperiencesothat theycanbe

understood,evaluated,predictedandmotivated.

In orderto instantiateaspecificreuse-enablingenvironment,weneedto choosea modelof

thesoftwareevolutionprocessitself.In general,suchanevolutionprocessmodelneedsto becapa-

bleof describingtheintegrationof learningandreuseinto thesoftwareevolutionprocess.In par-

ticular, it needsto becapableof modelingwhenexperienceis createdandrecordedinto the

V. Basili
Univ. of MD
18of 47

experiencebaseaswellaswhenexistingexperienceis used.It needsto provideanalysisfor the

purposeof on-linefeedback,evaluatingtheapplicationof all reuseexperience,andoff-line feed-

backfor improvingtheexperiencebase.

Thereuse-enablingTAMEenvironmentmodeldepictedin Figure3 is an instantiationof

thereuse-enablingsoftwareenvironmentmodelof Section3.2.basedona verygeneralimprove-

meritorientedevolutionprocessmodel.

 oftware Evolution Proces,
_1: _racter_ _' :sei_: _ _|¢c_. '

I
" " . ' :: i ' : : : " :]::.. : :

:::;: :: ::::::::ii.i:i:'_,;_F_:_*5 _' :: ::......... .., ..:

............................. -_ -.,_-.-]-.-
GE ERAL* 94G

.FB
J

EXPERIENCE BASE

Figure 3: Reuse-Enabling "TAME" Environment Model

Each software project performed according to this improvement oriented evolution process

model consists of a planning and an execution stage. The planning stage includes a characteriza-

V. Basili
Univ. of MD
19 of 47

tion of the currentstatusof the projectenvironment,the settingof projectandimprovement

goals,andtheselectionof constructionandanalysismethodsandtoolsthat promiseto meetthe

statedgoalsin thecontextof the characterizedenvironment.Theexecutionstageincludesthe

constructionofoutputproductsandtheanalysisof theseconstructionprocessesandresultingout-

putproducts.

TheTAMEenvironmentmodelgivesusa basisfor discussingtheintegrationof therecord-

ingand(re-)useactivitiesinto thesoftwareevolutionprocess.Duringtheenvironmentcharacter-

izationstageof the improvementorientedprocessmodelwe(re-)useknowledgeabouttheneeds

andcharacteristicsof previousprojectsandrecordthe needsandcharacteristicsof thecurrent

projectinto theexperiencebase.Duringthegoalsettingstagewe(re--)useexistingplansfor con-

structionandanalysisfromsimilarprojectsandrecordthenewplanswhichhave been tailored to

the needs of the current project into the experience base. During the method and tool selection

stage, we (re-)use as many of the constructive and analytic methods and tools which had been

used successfully in prior projects of similar type as feasible and record possibly tailored versions

of these methods and tools into the experience base. During construction we apply the selected

methods and tools, and record the constructed products into the experience base. During analysis

we use the selected methods and tools in order to collect and validate data and analyze them, and

record the data, analysis results and lessons learned into the experience base.

The TeM\IE environment explicitly supports the capturing of all kinds of experience. The

consistent application of the improvement oriented process model across all projects within an

organization provides a mechanism for evaluating the recorded experience, helping us to decide

what and how to reuse, tailoring and analyzing. TAME supports continuous learning. The expli-

cit and comprehensive modeling of the reuse-enabling evolution environment including the experi-

ence b_e, the evolution process, and the various learning and reuse activities (see Figure 3) allows

us to measure and evaluate all relevant aspects of reuse. The measurement methodology used and

supported within the TAME environment has been published in earlier papers [7, 8}.

V. Basili
Univ. of MD
20 of 47

5. CONCLUSIONS

In this paperwehavemotivatedandoutlined the scope of a comprehensive reuse frame-

work, introduced a reuse-enabling software environment model as a first step towards such a

comprehensive reuse framework, and presented a first instantiation of such an environment ill the

context of the TAME (Tailoring A Measurement Environment) project at the University of Mary-

land [7, 8].

The reuse-enabling software evolution environment model presented in Section 3 provides a

basic environment for supporting the recording of experience, the off-line generalization and

tailoring of experience, the off-line formalization of experience, and tile (re-) use of existing

experience.

Further steps required towards the outlined reuse framework are more specific models of

each of these activities that differentiate the components of these activities and serve as a basis

for characterization, discussion and analysis. We are currently taking the reuse-enabling software

environment model of section 3.2 down one level and developing a model for (re-)using experi-

ence. Based on this reuse model we will develop a reuse taxonomy allowing for the characteriza-

tion of any instance of reuse. The reuse model will provide insight into the other activities of the

reuse-enabling environment model only in the way they interact with the (re-)use activity.

Corresponding models for each of the other activities need to be developed and integrated into

the reuse-enabling software environment model.

The reuse-enabling TAME environment model serves as a basis for better understanding,

evaluating and motivating reuse practices and necessary research activities. Performing projects

according to the TAME environment model requires powerful automated support for dealing with

the large amounts of experience and performing the complicated activities of recording, generaliz-

ing and tailoring, formalizing, and (re-)using experience. Indispensable components of such an

automated support system are a powerful experience base, and a measurement support system.

Many of the reuse approaches in the past have assumed that the developer has sufficient implicit

V. Basili
Univ. of MD
21 of 47

knowledgeof the characteristicsof

reuse,thecandidatereuseobjects,etc.

The institutionalizedlearning of an

the particular project environment,specificneedsfor

it is not trivial to haveall this informationavailable.

organizationand the properdocumentationof that

knowledgeisdefinitelyone of the keysto effectivereuse.This leadsto evenbetterspecification

methodsandtools(oneofthefrequentlymentionedkeysto effectivereuse).

Aspartof theTAMEprojectat theUniversityof Marylandwehavebeenworkingonpro-

vidingappropriatesupportfor buildingsuchan experiencebase,andsupportinglearningand

(re-)usevia measurement.We havecompletedseveralcomponentstowardsa first prototype

TAMEsystem.Thesecomponentsincludethedefinitionof projectgoalsandtheir refinementinto

quantifiablequestionsandmetrics,thecollectionandvalidationof data,their analysis,andthe

storageof all kindsof experience.Oneof thetoughestresearchproblemsis to usemeasurement

notonlyfor analysis,but alsofor feedback(learningandreuse)andplanningpurposes.Weneed

moreunderstandingof howto supportfeedbackandplanning.TheTAMEsystemis intendedto

serveasa vehiclefor ourresearchtowardstheeffectivesupportof explicitlearningandreuseas

_utlinedin thispaper.

8. ACKNOWLEDGEMENTS

Wethankall our colleaguesandgraduatestudentswhocontributed to this paper by either

working on the TAME or any other reuse-related project or reviewing earlier versions of this

paper.

7. REFERENCES

[11 J. Bailey, V. R. Basili, A Meta-Model for Software Development Resource Expenditures," in

Proc. Fifth International Conference on Software Engineering, San Diego, USA, March

1981, pp. 107-116.

V. Basili

Univ. of MD
22 of 47

[2] V.R. Basili,"CanWeMeasureSoftwareTechnology:LessonsLearnedfromEightYearsof
Trying," in Proc.TenthAnnualSoftwareEngineeringWorkshop,NASAGoddardSpace
FlightCenter,Greenbelt,MD,December1985.

[31 V.R. Basili, "QuantitativeEvaluationof SoftwareMethodology,"Dept.of Computer
Science,Universityof Maryland,CollegePark,TR-1519, July 1985 [also in Proc. of
the First PanPacificComputerConference,Australia,September1986].

[4] Victor R. Basili, "SoftwareMaintenance----Reuse-OrientedSoftwareDevelopment,"in
Proc.ConferenceonSoftwareMaintenance,Key-NoteAddress,Phoenix,AZ,October1988.

[5] V.R. Basili,C. LoggiaRamsey,"ARROWSMITH-P- A PrototypeExpert Systemfor
SoftwareEngineeringManagement,"IEEE Proceedingsof the Expert Systemsin
GovernmentSymposium,McLean,VA, October1985,pp. 254-264.

[6] V.R. Basili,H. D. Rombach,"Tailoring the SoftwareProcessto Project Goalsand
Environments,"Proc.of the Ninth International Conferenceon SoftwareEngineer-
ing, Monterey,CA, March30- April 2, 1987,pp.345-357.

[7] V.R. Basili,H. D. Rombach,"TAME: IntegratingMeasurementinto SoftwareEnviron-
ments,"TechnicalReportTR-1764(or TAME-TR-I-1987),Dept.of ComputerScience,
Universityof Maryland,CollegePark,MD20742,June1987.

[8] V.R. Basili, H. D. Rombaeh"The TAME Project: TowardsImprovement-Oriented
SoftwareEnvironments,"IEEETransactionsonSoftwareEngineering,vol. SE-14,no. 6,
June1988,pp. 758-773. [is also available as Technical Report (UMIACS-TR-88-8, CS-
TR-1983, or TAME-TR-2-1988), Department of Computer Science, University of Mary-

land, College Park, MD 20742].

[9] V.R. Basili, H. D. Rombach, J. Bailey, and B. G. Joo, "Software Reuse: A Framework,"
Proc. of the Tenth Minnowbrook Workshop on Software Reuse, Blue Mountain Lake,

New York, July 1987.

[10] V. R. Basili, R. W. Selby, D. H. Hutehens, "Experimentation in Software Engineering,"
IEEE Transactions on Software Engineering, vol.SE-12, no.7, July 1986, pp.733-743.

[11] V.R. Basili and M. Shaw, "Scope of Software Reuse," White paper, working group on
'Scope of Software Reuse', Tenth Minnowbrook Workshop on Software Reuse, Blue

Mountain Lake, New York, July 1987 (in preparation).

[12] Ted Biggerstaff, "Reusability Framework, Assessment, and Directions," IEEE Software

Magazine, March 1987, pp.41-49.

[13] P. Freeman, "Reusable Software Engineering: Concepts and Research Directions," Proc.

of the Workshop on Reusability, September 1983, pp. 63-76.

[14] R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusability," IEEE Software, vol.4,

no.l, January 1987, pp. 6-16.

(15] IEEE Software, special issue on 'Reusing Software', vol.4, no.l, January 1987.

[16] IEEE Software, special issue on 'Tools: Making Reuse a Reality', vol.4, no.7, July 1987.

[17] G. A. Jones, R. Prieto-Diaz, "Building and Managing Software Libraries," Proc. Comp-

sac'88, Chicago, October 5-7, 1988, pp. 228-236.

[18] F. E. McGarry, "Recent SEL Studies," in Proe. Tenth Annual Software Engineering

Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 1985.

[19] Mary Shaw, "Purposes and Varieties of Software Reuse," Proceedings of the Tenth
Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,

1987.

[20] T. A. Standish, "An Essay on Software Reuse," IEEE Transactions on Software

Engineering, vol. SE-10, no. 5, September 1984, pp.494-497.

V. Basili
Univ. of MD
23 of 47

THE VIEWGRAPH MATERIALS

FOR THE

V. BASILI PRESENTATION FOLLOW

TOWARD A REUSE-ORIENTED SOFTMARE

EVOLUTION PROCESS

VICTOR R. BASILI
H. DIETER ROMBACH

INSTITUTE FOR ADVANCED COMPUTER STUDIES
AND

DEPARTHENT OF COHPUTER SCIENCE
UNIVERSITY OF MARYLAND

: : [; T F!i___,._EO

INT[NTIONAId.Y BLANI[

V. Basili
Univ. of MD
27 of 47

REUSE OF EXPERIEIICE IS THE KEY TO PRODUCTIVITY AND

OUAL ! TY

EXPERIENCE INCLUDES PRODUCTS, PROCESSES AND KNOWLEDGE

HOST REUSE IS AD HOC, IMPLICIT, AT CODE LEVEL

REUSE RUST BE BUILT INTO THE PROCESS

MODELS OF REUSE-ORIENTED EVOLUTION ENVIRONMENT AND

ACTIVITIES MUST BE DEVELOPED

V. Basili
Univ. of MD
28 of 47

IMPROVEMENT PARADIGM

• CHARACTERIZE the current project environment

SET UP GOALS and REFINE THEM INTO

QUANTIFIABLE QUESTIONS AND METRICS for
successful project performance and improvement over

previous project performances

CHOOSE the appropriate construction model for thll

project and supporting methods and tools

EXECUTE the processes and construct the products,

collect the prescribed data, validate it, and provide
feedback in real-time

ANALYZE the data to evaluate the current practices,
determine problems, record the findings and
RECOMMENDATIONS FOR IMPROVEMENT

Proceed to step 1 to START THE NEXT PROJECT,
ARMED WITH THE EXPERIENCE GAINED FROM
THIS AND PREVIOUS PROJECTS

The TAME Project
V. Basili
Univ. of MD
29 of 47

REUSE]n TNE SEL

II"iPLICIT/THROUGH PIEOffLE

APPLICAT]ON I)Olilkll

SOLUTION STRUCTURE

RANA6ERENT/SUPPORT

EXPLICIT/THROUGH PROCESS

CODE REUSE

OUESTIONS:

NHAT HAPPENS TO REUSE AS WE IqOVE FROM FORTRANTO ADA?

HOW DO NE HEASURE THE EFFECTS OF REUSE?

NHAT IS THE EFFECT OF REUSE ON ALL ASPECTS OF THE

LIFE CYCLE?

V. Basili
Univ. of MD
30 of 47

TRADITIONAL SOFTWARE EVOLUTION

TYPICALLY SEEeS

PROVIDE THE PROJECT DATA BASE

SUPPORT THE INTERACTION OF PEOPLE MITH HETHODSo

TOOLS AND THE PROJECT DATA BASE

EXPERIENCE IS NOT

CONTROLLED BY THE PROJECT DATA BASE

ONNED BY THE ORGANIZATION

REUSE EXISTS IHPLICITLY

V. Basili
Univ. of MD
31 of 47

TRADITIONAL SE IqODEL

Imemb meCJkmb t4ob

? ? ?

Software_ Evolutio_

A

V
_dD o_oD _ oo'o

|o_oeo

- metlm_ & tooh
!

!- iProcem & product Olpe_
0

emm |

0

0

t

qe V 0

e omo |

0

0

|

|

!

e

tPROJECT DATABASE

V. Basili
Univ. of MD
32 of 47

A REUSE-ORIENTED EVOLUT|OU ENVIRONMENT PIODEL

Itl4AT ARE THE COMPONENTS OF A REUSE-ORIENTED EVOLUTION

PIODEL ?

HOW CAN THE REUSE PROCESS IqODEL BE INCORPORATED INTO

THE CONTEXT OF DEVELOPMENT AND I_AINTENANCE?

HOW CAN LEARNING AND FEEDBACK BE USED TO SUPPORT THE

REUSE MODEL?

V. Basili
Univ. of MD
33 of 47

IMPROVEMENT

ENHANCING A SOFTWARE PROCESS OR PRODUCT M|TH RESPECT

TO QUALITY OR PRODUCTIVITY

FEEDBACK

RETURNING TO THE ENTRY POINT OF SOME PROCESS ARMED

WITH THE EXPERIENCE GAINED FROM PREVIOUS PERFORMANCES

OF THIS PROCESS

LEARNING

THE ACTIVITY OF ACOUIRING KNOWLEDGE BY INSTRUCTION,

E,G,, CONSTRUCTION, OR STUDY, E,G,, ANALYSIS

REUSE

THE ACTIVITY OF REPEATEDLY USING EXISTING EXPERIENCE,

AFTER RECLAIMING IT, WITH OR WITHOUT MODIFICATION

EXPERIENCE BASE

A REPOSITORY OF ALL KINDS OF EXPERIENCE

V. Basili
Univ. of MD
34 of 47

RELATIONSHIP OF THE TERMS

IP, PROVEIqENT OF A SOFTNARE PROCESS OR PRODUCT

REQUIRES THE FEEDBACK OF AVAILABLE EXPERIENCE INTO

SOHE PROCESS

FEEDBACK

REQUIRES THE

ACCUHULATION OF EXPERIENCE (LEARNING)

INTO SOHE AVAILABLE RESOURCE (EXPERIENCE BASE)

THE USE OF THIS EXPERIENCE FOR A PARTICULAR

PURPOSE (REUSE)

EXPERIENCE BASES CAN BE DATA BASES, INFORMATION BASES,

KNOWLEDGE BASES OR ANY COMBINATION OF THE THREE

V. Basili
Univ. of MD
35 of 47

RE-USE ORIENTED $E MODEL

EXPERIENCE BASE

V. Basili
Univ. of MD
36 of 47

SYSTEMATIC LEARNING AND REUSE

SYSTEMATIC LEARNING REOUIRES SUPPORT FOR

RECORDING EXPERIENCE

OFF-LINE GENERALIZING OR TAILORING OF EXPERIENCE

FORMALIZING OF EXPERIENCE

SYSTEMATIC REUSE REOUIRES SUPPORT FOR

USING EXISTING EXPERIENCE

ON-LINE GENERALIZING OR TAILORING OF CANDIDATE EXPERIENCE

BOTH LEARNING AND REUSE NEED TO BE INTEGRATED INTO AN

OVERALL SOFTWARE EVOLUTION MODEL

V. Basili
Univ. of MD
37 of 47

RECORDI N6 EXPERIENCE

OBJECTIVE:

CREATE A REPOSITORY OF NELL-SPECIFIED AND CLASSIFIED

EXPERIENCE

REOUIREMENTS:

EFFECTIVE MECHANISMS FOR COLLECTING, VALIDATING, STORING

AND RETRIEVING EXPERIENCE

EXAMPLES:

STORING OF CODE COMPONENTS FROM PRIOR SYSTEMS IN A

REPOSITORY, APPROPRIATELY DOCUMENTED, CATALOGED AND

CATEGORIZED

CATALOGING OF A SET OF LESSONS LEARNED IN APPLYING A NEW

TECHNOLOGY

SAVING MEASUREMENT DATA IN A DATA BASE ON THE COST OF

DEVELOPING A SYSTEM

RECORDING A DEVELOPMENT METHOD FOR USE ON THE NEXT PROJECT

V. Basili
Univ. of MD
38 of 47

(RE-)USING EXISTING EXPERIENCE

OBJECTIVE:

PIAXIHIZ|NG THE EFFECTIVE USE OF PREVIOUSLY RECORDED

EXPERIENCE DURING THE PLANNING AND EXECUTION OF ALL

PROJECTS WITHIN AN ORGANIZATION

REOUIREMENTS:

SPECIFICATION OF THE REUSE ENVIRONMENT

CHARACTERIZED CAND|DATE REUSE OBJECTS

AVAILABLE EXPERIENCE

A PROCESS IN WHICH WE

SPECIFY REUSE NEEDS

FIND APPROPRIATE CANDIDATES

EVALUATE REUSE CANDIDATES

MODIFY THE REUSE CANDIDATE

INTEGRATE THE REUSE CANDIDATE INTO THE PROCESS

TEST THE INTEGRATED OBJECT WHICH INCLUDES THE REUSE OBJECT

EXAHPLES:

USING CODE COMPONENTS FROH THE REPOSITORY

DEVELOPING A RISK t'tANAGEMENT PLAN BASED UPON LESSONS LEARNED

IN APPLYING A NEW TECHNOLOGY

ESTIMATING THE COST OF A PROJECT USING DATA ON PAST PROJECTS

USING A DEVELOPMENT HETHOD CREATED FOR A PRIOR PROJECT

V. Basili
Univ. of MD
39 of 47

6ENERALIZING OR TAILORING OF EXISTING EXPERIENCE

PRIOR TO ITS REUSE

OBJECTIVE: GENERALIZING

IqAKING A CANDIDATE REUSE OBJECT USEFUL IN A LARGER SET OF

POTENTIAL TARGET APPLICATIONS

OBJECTIVE: TAILORING

FINE-TUNING A CANDIDATE REUSE OBJECT TO FIT A SPECIFIC TASK

OR EXHIBIT SPECIAL ATTRIBUTES, SUCH AS SIZE OR PERFORMANCE

NOTE:

GENERALIZING AND TAILORING CAN BE ON-LINE OR OFF-LINE

ON-LINE: DONE FOR A SPECIFIC PROJECT

OFF-LINE: THE PRECISE REUSE CONTEXT NOT KNOWN A PRIORI

REQUIREMENTS:

A WELL-DOCUMENTED CATALOGED AND CATEGORIZED SET OF REUSE OBJECTS

MECHANISMS FOR EASY MODIFICATION

AN UNDERSTANDING OF THE POTENTIAL TARGET APPLICATIONS

EXAMPLES:

DEVELOPMENT OF A GENERIC PACKAGE FROM A SPECIFIC PACKAGE

]NSTANTIATING A GENERIC PACKAGE FOR A SPECIFIC DATA TYPE

GENERALIZING THE LESSONS LEARNED FROM A SPECIFIC DESIGN TECHNOLOGY

FOR A SPECIFIC APPLICATION TO ANY DESIGN FOR THAT

APPLICATION OR ANY APPLICATION

V. Basili
Univ. of MD
40 of 47

PARAMETERIZING A COST MODEL FOR A SPECIFIC ENVIRONMENT

I'K)DIFYING THE DESIGN INSPECTION PROCESS BASED UPON A HISTORY

OF THE DEFECTS I'LADE IN THE SPECIFIC ENVIRONHENT

V. Basili
Univ. of MD
41 of 47

FQRMALIZATION OF EXPERIENCE

OBJECTIVE:

THE ENCODING OF EXPERIENCE IN PIORE PRECISE, BETTER UNDERSTOOD NAYS

REQUIREHENTS:

HODELS OF VARIOUS REUSE OBJECTS

NOTATIONS FOR I_LAKING THE I'IODELS RORE PRECISE

NOTATIONS FOR ABSTRACTING REUSE OBJECT CHARACTERISTICS

IqECHANISHS FOR VALIDATING THE MODELS

HECHANISHS FOR INTERPRETING HODELS IN CONTEXT

EXAMPLES:

WRITING THE FUNCTIONAL SPECIFICATION OF A CODE MODULE

TURNING A LESSONS LEARNED DOCUHENT INTO A IqANAGEHENT SYSTEH

THAT SUPPORTS DECISION MAKING

BUILDING A COST HODEL EHPIRICALLY BASED UPON DATA AVAILABLE

DEVELOPING EVALUATION CRITERIA FOR EVALUATING THE PERFORMANCE

OF A PARTICULAR HETHOD

AUTOHATING HETHODS INTO TOOLS

V. Basili
Univ. of MD
42 of 47

INTEGRATION OF REUSE AND LEARNING INTO A

SOFTWARE EVOLUTION PROCESS i_ODEL

OBJECTIVE:

TO SUPPORT THE LEARNING AND REUSE PROCESSES IN A WELL-SPECIFIED,

ORGANIZED, NATURAL NAY SO THAT IT CAN BE UNDERSTOOD, EVALUATED,

PREDICTED AND ROTIVATED

REQUIREMENTS:

SUPPORT MECHANISMS FOR

RECORDING WHAT HAS BEEN LEARNED

(RE-)USING AND ON-LINE TAILORING OR GENERALIZING

OFF-LINE TAILORING

FORI_L]ZATION

EXAHPLES:

A REPOSITORY FOR ALL POSSIBLE CANDIDATE REUSE OBJECTS INCLUDING

HETHODS, TOOLS, PRIOR PROJECT DOCUMENTS (CODE, REQUIREMENTS,

RISK HANAGEHENT PLANS)

A SET OF MODELS FOR VARIOUS PROCESSES AND PRODUCTS

A MEASUREMENT DATA BASE

A KNOWLEDGE BASE THAT SUPPORTS MANAGEMENT DECISION-P, AKING

BASED UPON DATA, LESSONS LEARNED AND OTHER AVAILABLE

INFORPLATION

V. Basili
Univ. of MD
43 of 47

[NPROVEI'IENT RE-USE ORIENTED SE MODEL

l

• I_ _, _ _ n

..... • :: % _ • j° - :.]..... "_ ,":::. • ..:: - "_-_._...._.dr _.._,a* . - :. ..?-':::-: .. . ' :
" "" ql"-" " ..-.'.: ::: :-" . ::., :-

: Informal " _h_natis_d prod_lmed

• PRO,lIB(T SPECI'IC : t"lP. : f': , ".. , - ,:

• u _II

EXPERIENCE BASE

V. Basili

Univ. of MD
44 of 47

OE POOR (_U/_,LiTY

REUSE--ENABLING

SOFTWARE EVOLUTION PROCESS

object/context

EXPERIENCE BASE

V. Basili
Univ. of MD
45 of 47

REUSE-ENABLING

SOFTWARE EVOLUTION PROCESS

c: reuse context

c 2.2: evolution context
n

2.1: system contex

0_2: object]

I
i

1

J

p: rel_J4_)rotes8 J

lip

e. 1.1: system contex

e 1.2: evolution context

V

t. _...._ ... o.o-_..-oo....No *

EXPERIENCE BASE

V. Basili
Univ. of MD
46 of 47

CONCLUSIONS

GENERAL

NEED INTEGRATED MODELS OF ALL THE ACTIVITIES!

E.G., BALANCE BETWEEN REUSE AND TAILORING

NEED TO USE IqODELS AND PROJECT 60ALS TO DEVELOP USEFUL

MEASURES

GOALS AND EFFECTS OF REUSE MUST BE EXPLICITLY STATED SO

WE CAN CHARATERIZE, EYALUATEo PREDICT AND IqOTIVATE

REUSE

SEL

IqOVING TO ADA (OR ANY NEW TECHNOLOGY) COSTS IN THE SHORT

RUN, BUT AN EXPLICIT REUSE CHARACTERIZATION CAN HELP

EFFECT IS MORE THAN LINES OF CODE REUSED

ARE MOVING TOWARD BUILDING AN EXPERIENCE BASE TO SUPPORT

TAILORING AND REUSE

V. Basili
Univ. of MD
47 of 47

The Software Management Environment (SME)

Jon D. Valett

(NASA/GSFC)

William Decker N9 1 " 1 0 6 0 9

and

John Buell

(Computer Sciences Corporation)

1.0. Background (charts 1 and 2)

The Software Management Environment (SME) is a research

effort designed to utilize the past experiences and results of

the Software Engineering Laboratory (SEL) [Card82] and to

incorporate this knowledge into a tool for managing projects.

SME provides the software development manager with the ability to

observe, compare, predict, analyze, and control key software

development parameters such as effort, reliability, and resource

utilization. This paper describes the major components of the

SME, outlines the architecture of the system, and provides

examples of the functionality of the tool.

The SEL has been researching and evaluating software

development methodologies for over ten years. This research has

provided valuable insight into the software development process

of one particular organization. By collecting detailed software

development data and recording that data in a software

engineering data base [Church82][Heller87], the SEL has been able

to characterize and understand the development process within

that organization. Using this data to measure the impact of

various methodologies, tools, and perturbations to that process

has enabled the SEL to better control and manage the software

projects of this organization.

Recognizing the vast potential of providing the experience

of previous projects, the data, the research results, and the

knowledge of experienced software managers to the managers of

ongoing projects, research efforts were initiated to provide

these items in the form of a tool. Initial prototype efforts

began in 1984, with the development of a tool that explored the

possibilities of providing this information. That effort was

thoroughly analyzed and requirements were developed for a more

complete software system late in 1986 [Valett87]. During this

time work began on the current SME.

The major functionality that the SME provides for its user

can be divided into four high level concepts:

i.) The ability for a manager to compare the ongoing software

project to other projects. This function allows the manager to

view software metric data such as weekly effort or error data and

to compare it to other projects.

2.) The ability for the manager to receive predictions of

future events of interest. SME will predict the final values for

key project parameters such as effort or reliability.

3.) SME will also analyze project data to give insights into

the strengths and weaknesses of the development process.

4.) SME will analyze overall project quality. This will

J. Valett
NASA/GSFC
I of 21

provide the manager with high-level insight into the project's

overall development process.

Thus, the SME enables the manager to gain valuable insight into

the progress and quality of a software development project.

This paper describes the concepts and architecture of the

SME. Section 2.0 is devoted to describing the research results

and data which are incorporated into the SME. Section 3.0

describes the architecture of the system and gives examples of

the functions available to the manager. Finally, a brief

discussion is presented in section 4.0.

2.0 The Components of SME

Attempting to integrate past research results along with

dynamic project data, the SME provides the manager with a wide

variety of information for monitoring and controlling an ongoing

software project. The information required to provide this

functionality can be broken into three major components: i) the

corporate history, 2) research results from studies of the

software development process, and 3) management rules for

software development.

2.1 The Corporate History (charts 3 and 4)

One underlying assumption of the SME is that a corporate

history of some type exists. In this case, the SEL data base

serves as the corporate memory for the SME. The SEL data base

has evolved into its current form over the nearly 12 years of its

existence. The data base itself provides the SME with the

majority of the raw data required to monitor a project.

The major items of data provided by the data base include

weekly software parameters that are of interest to the software

manager. These weekly items of data include such parameters as

effort, computer utilization, growth of source code, change

history, and error history. All of these items are available as

part of the SEL data base for any project of interest, as well as

on the past projects that a manager may want to use as a basis

for comparison.

Many of the other data needed by the SME is acquired from
the SEL data base. This data includes items which characterize

the types of projects as well as the language or tools used.

Subjective data which is used to evaluate projects on a series of

software methodology questions is also used by the system.

During the 12 years of the SEL's existence, numerous studies

and reports characterizing and evaluating the software

development environment have been written. These studies and

reports have provided numerous research results for the

environment. Thus, the SEL data base establishes the foundation

for all of the components of the SME.

2.2 Research Results (chart 5)

A second major component of the SME is the research results

that have been developed via the SEL data base. Information

J. Valett
NASA/GSFC
2 of 21

derived from papers and studies developed through experimentation

and through analysis of the SEL data base is a key part of the

SME (for examples of results see [Valett88]). The SME attempts

to incorporate these research results via models and measures for

the software environment. Based on a comprehensive understanding

of the development environment, these models and measures are

used by the SME to enable the manager to better understand how a

particular project compares to the normal project within the

environment. They also are used by the SME in predicting and

estimating future conditions on the software project.

Models of software development parameters are essential for

the SME to perform its prediction and comparison functions. A

model profiles the expenditure, the utilization, or the

production of a software development parameter. As an example, a

model of the staffing profile would capture the typical

expenditure of effort over the entire software development life

cycle [Basili78]. This type of model can be used by a manager to

compare the current effort expenditure with the typical one for
this environment.

Other types of relationships are used by the SME to capture

known affects of specific software development methodologies.

For instance, the knowledge that code reading is the most

affective method for finding errors in this environment

[Selby87], is important information to disseminate to a manager.

One goal of the SME is to provide a knowledge base of known facts

and relationships about a particular environment.

2.3 Software Development Rules (chart 6)

A final major component of the SME is software development

rules. The SME attempts to integrate the experience of software

managers into an expert system concept to provide the ability to

analyze project measures and status. Previously, this experience

was only captured in lessons learned or summary documents. The

SME formalizes this knowledge into a basic structure that will

continually evolve as the experience and knowledge are validated.

By automating the knowledge utilization into an expert system,

SME gives the manager the ability to apply past experience to

current projects. The basic concept of utilizing expert systems

for software management was proven feasible by previous research

done by the SEL [Valett85][Ramsey86]. Admittedly, the extension

of these concepts for use within the SME is an extremely

difficult area of research, however, early results show they will

be very useful.

Within the SME experienced manager's knowledge can be used

in numerous areas. The knowledge has been collected from

interviews with numerous managers, along with analysis of SEL

data and information obtainable from the various reports and

studies written by the SEL. An example of the type of knowledge

used by the SME is shown in chart 6. This rule:

If error rate is lower than normal then

i. Insufficient testing

2. Experienced team

3. Problem less difficult than expected

is a simplified form of the type of rule collected for use in the

J. Va[ett
NASA/GSFC
3 of 21

SME. Utilizing this rule, numerous other rules, and facts about

the measures and status of the software project, the SME can

reach conclusions pertaining to the deviations of project

measures, such as error rate. Thus, the system can give the

manager vital information regarding the strengths and weaknesses

of a software development effort. In the future, this knowledge

will also be used to provide the overall assessment functionality
of the SME.

Obviously, the collection and validation of these rules and

relationships is a major task. The research into this part of

the SME will involve continual iteration and evolution. However,

by establishing a baseline set of software rules and

incorporating them into the SME and by constantly integrating

feedback on the validity of the conclusions and knowledge, the

SME knowledge base will mature into an even more valuable

component of the system.

3.0 SME Architecture and Functionality

The SME architecture is designed to integrate the three

major components described in section 2 into a tool which

provides the manager with the functions of comparison, analysis,

prediction, and expert guidance (see chart 7). The major

processing of the system is performed on a VAX 11/780 and is

written in Pascal, with the user interface and some data handling

procedures performed on IBM/PC compatibles. The selection of

this particular hardware architecture was driven by the desire to

make SME accessible to managers in their offices and to provide

color graphics capabilities. The remainder of this section is

devoted to describing the major functionality of the SME:

comparison, analysis, and prediction.

3.1 Comparison (charts 8 and 9)

The comparison function of the SME is designed to allow the

manager to view project data on measures of interest such as

effort, lines of code (LOC), CPU utilization, etc. and to compare
these measures to past projects and to models of the normal

project. Comparison utilizes the SEL data base and current

project data along with models and measures of the typical

project. Providing the comparison feature allows the manager to

determine how the current project is behaving as it compares to
past similar projects as well as whether or not the current

project is following the "typical" pattern for that particular

measure. In the examples chart 8 shows a comparison of the

number of errors on a current project against the number errors

on a past project, while chart 9 shows a similar comparison,

except that the past project is replaced by a model of errors

committed for the environment. These types of comparisons are

available for a variety of project measures; they enable the

manager to examine the characteristics of the current project in
the context of other projects.

3.2 Analysis (chart i0)

J. Valett
NASA/GSFC
4 of 21

Giving the user the knowledge of experienced software

managers, the analysis function provides insights into the

strengths and weaknesses of a project. Utilizing the SEL

database, the current data, the models and measures, and the rule

base, the analysis function compares the value for a certain

measure for a current project to the model of that measure and

reaches conclusions about why the project is deviating from the

norm. The example shows a comparison of the number of errors on

the current project with the model for errors. Since the number

of errors is below what would be expected at this point in the

software development, the SME can provide analysis as to why this

condition may be occurring. The example illustrates a use of the

rule discussed in section 2.3. While this is an elementary

example, it does show the type of information SME provides. This

type of analysis provides the manager with valuable insight into

potential problems that might be occurring on the project of
interest.

3.3 Prediction (chart ii)

Based on the current status of a software measure, the

prediction function attempts to estimate the behavior of the

measure through the completion of the project. Making heavy use

of the models and measures along with the data for the project of

interest, this function gives managers reasonable estimates of

key project parameters. For example, given the current system

size in LOC, information regarding the project's subjective

profile, and some project estimates, SME predicts the final

system size. Similarly, information on the current phase and

error rate of a project along with certain models and measures,

enables the SME to predict the final error rate for the system.

Obviously, these and other key project parameters are invaluable

to the manager in planning and controlling a software project.

4.0 Discussion (chart 12)

While the SME currently provides parts of all the

capabilities described in section 3, it is still considered a

research effort. Much research into each of the functions

described as well as into other more advanced features of the

system is still required for the system to become a fully useful

tool. Thus, the system will change as these features are

integrated into the overall architecture of the system.

In a similar manner, the system will continually evolve as

the knowledge of the environment evolves. For example, although

the current SME focuses on the waterfall life cycle model, as

other paradigms are utilized and adopted within the environment,

these results will be factored into the SME. The SME will

continue to mature as long as research into the understanding of

the development environment continues to provide an improved

understanding of the software process.

Continuing to focus on utilizing the knowledge and

experience of past research in addition to future research, the

SME provides and will continue to provide a valuable feedback

mechanism which encourages the reuse of this knowledge and

J. Valett
NASA/GSFC
5 of 21

experience. The formalization of this reuse into a constantly

maturing software tool, ensures that the knowledge will be

captured and used on future software development efforts. Thus,

the SME should continue to be a useful software management tool

that will provide the software development manager with valuable

information and insight into the quality of a software

development project.

[Basili78]

[Card82]

[Church82]

[Heller87]

[Ramsey86]

[Selby87]

[Valett85]

[Valett87]

[Valett88]

REFERENCES

Basili, V. and M. Zelkowitz, "Measuring Software

Development Characteristics in the Local

Environment," Computers and Structures, August

1978, Vol. i0.

Card, D., F. McGarry, G. Page, et al., The

Software Enqineerinq Laboratory, SEL-81-104,

February 1982.

Church, V., D. Card, and F. McGarry, Guide to

Data Collection, SEL-81-101, August 1982.

Heller, G.,Data Collection Procedures for the

Rehosted SEL Data Base, SEL-87-008, October 1987.

Ramsey, C. and V. Basili, "An Evaluation of

Expert Systems for Software Engineering

Management," TR-1708, University of Maryland,

Technical Report, September 1986.

Selby, R. and V. Basili, "Comparing the

Effectiveness of Software Testing Strategies,"

IEEE Transactions on Software Enqineering,
December 1987.

Valett, J. and A. Raskin, "DEASEL: An Expert

System for Software Engineering," Proceedinqs of

the Tenth Annual Software Enqineerinq Workshop,

SEL-85-006, December 1985.

Valett, J., "The Dynamic Management Information

Tool (DYNAMITE): Analysis of Prototype,

Requirements, and Operational Scenarios," Masters

Thesis, The University of Maryland, May 1987.

Valett, J. and F. McGarry, "A Summary of Software

Measurement Experiences in the Software

Engineering Laboratory," Proceedinqs of the 21st

Annual Hawaii International Conferences on System

Sciences, January 1988.

J. Valett
NASA/GSFC
6 of 21

THE VIEWGRAPH MATERIALS

FOR THE

J. VALETT PRESENTATION FOLLOW

I--

UJ

!1.1

LL!

LI.
O
¢.D

LL!

Z
UJ

W

m

LLI

UJU-
¢/)

>_
CO

Z,_
Oz

he" ..j
LLI
_m

wm o
az_ :I:

c_)

J. Valett o
NASA/GSFC
9 of 21 o

PAGE _" .INTENTIONAB.YBLANK

_ • • •

",,i,,-

J. Valctt
NASA/GSFC
10 of 21

i'M
O
O

03,

t'M

O

0

,,i

(n

c"

c-
O

00

c-
O')

00
C

c"

om

C >

C 0

E
O_ 0")
0.-
-_ o
> 0")
CD c-

a o

0
co
(D
t-'-

ii

>
0

13..

4-- Or_
0._-, 0

e_

0

E c-

m

(D -,-'
> 0
e._

"0 0
_L

L--

c") C
E_

Oo

t-
O

0

E

> -

-,-,

0
"-0

C
0

0
wm

"0

ai

co
(D

E
,,,e'

©

"0
C

O0
c-

O')
C

CO

C 0

..., 121.

121 0

im

m

<

o5

0

0

M,,,,-

0

>.,
ii

m

l:r

(D
>
0

c-

.4..a

(D
n

0
C

r_

X
W

co
o

J. Valett o
NASA/GSFC

I1 of 21

I""
e'.e"

"r"

O

g

O
m

I--
u. <
0 66 _-

w 65 zIll(.5 I-
u_ < o _
0 _ w cc
w (.9 "_ LLI
O_ Z 0 n

5 o: x13_ W

rr
!11 <

J. Valett
NASA/GSFC
12 0f21

O

t'Xl

O

C_

I----

"r"
¢..D

Or)
_D

O

O

O
(D

°--,,_

O
k,_

13_

Z

0

L.O

0
0

CO
v--

C_

J. Valett o
NASA/GSFC
13 of 21

OC

0
re"

Ill
¢ao
I,Ll
OC
_,I
111

0)

> i::;

-c: c 0

,-

11_ "0

__. _
7O 0

Cl. ¢- m
Cl. "r- 4-.

_oo

0 O"
_CI.O

.c E

I--

J. Valctt

NASA/GSFC

14 of 21

¢,D
O
O

09

(D

0
0

J. Valett co

NASAtGSFC

15 of 21

I'--
fv"

-'r-

J. Valett
NASA/GSFC
16 of 21

cO
0
0
o6

0

c_

0
W
_!
a.

o

(9

0 o

0

r- n
cD

X

X

X

X

X

X

X

X

X
X

X

X
X

X
X

-o_
-_-E

mmm_,_

W
v

X

co

mmm

_o

0o_

._ E

E O_

0 0

"0 c-

"I-

LU

CO

I

r_ a C__ mlm

._ _
Or'- __ ¢_
k-o 0_n

O

J. Valett o
00

NASA/GSFC ,-
17 of 21 o

CO

I----

-r

O

W

J. Valett
NASA/GSFC
18 of 21

"ID

E
t---

I--.-
(D

2_
._ --="6
Q..._

r .,_.,

r--

[.u

TI
I

0)0'_"

a.o ,',w _.o

I
o® :_LU_)

O

O

03

C_

I.--

I--
_D

O.
[..ld

w

_D

 l)t !
._o ,._

"=

_E_w_)

C"

-1-

J. Valett o
NASA/GSFC

O,1
19 of 21 o

O
mlm

mmm

J. Valett
NASA/GSFC
20 of 21

0"b
¢-
O

°_

O
°_

"O

Ibm

12.

m

O.
E

CO

(I)

E
_D

x __orJ

x

x

x mm .N
x
X

XXx /

x r"
X "--

× U_
X

X

X

X

x x _m
X .w

Xx_ _ ,._

_ _

0

I-
<

S

t-
O

E
o

M,.-

r-
,I

0

o

m

0
m

a
W.I
ft.

U_!

(_

I

0 ._E _oo_

= _)

r_

m

k-

C_

0

CO

0

ur.o

I

!.1.
• • • • • • • • • •

E

0

W

0

Ii

E3
0
0

LI_

ed

>.,
i

r-

0

G

J. Valett
NASA/GSFC o
21 of 21

¢",,I

r..--I

I-'--

-r"

¢._

PANEL #2

SOFTWARE MODELS

R. Tausworthe, Jet Propulsion Labortary

T. Henson, IBM

W. Cheadle, Martin Marietta

D 88-25

/

N91-10610
1,7

uj _,
l

..<_ J[
[,
J

A COMMUNICATION CHANNEL
MODEL OF THE SOFTWARE

PROCESS

Robert C. Tausworthe

October 15, 1988

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology
Pasadena. California 91109

R. Tausworthe
JPL
! of 41

Theresearchdescribedin thispublicationwascarriedoutbvtheJetPropul-
sionLaboratory,CaliforniaInstituteof Technology,underacontractwith the
NationalAeronauticsandSpaceAdministration.

Referencehereinto anyspecificcommercialproduct,process,or serviceby
trade,name,trademark,manufacturer,or otherwise,doesnot constituteor
implyits endorsementbytheUnitedStatesGovernmentor theJet Propulsion
Laboratory,CaliforniaInstituteof Technology.

R. Tausworthe
JPL
2 of 41

Abstract

This publication reports beginning research into a noisy communication chan-

nel analogy of software development process productivity, in order to establish
quantifiable behavior and theoretical bounds. The analogy leads to a funda-

mental mathematical relationship between human productivity and the amount

of information supplied by the developers, the capacity of the human channel

for processing and transmitting information, the software product yield (object

size), the work effort, requirements efficiency, tool and process efficiency, and

programming environment advantage. The publication also derives an upper

bound to productivity that shows that software reuse is the only means that

can lead to unbounded productivity growth; practical considerations of size and
cost of reusable components may reduce this to a finite bound.

R. Tausworthe
JPL
3 of 41

1 INTRODUCTION

.ks Boehm [1] notes in a recent article, the computer software indu_,tr_ fl2r)ears

ha.s been accused of inferior productivity in comparison to its hardwar,' counter-

part. whose productivity' continues to increase at an intense rate [),+spite ad-

vances in languages, development environments, work stations, nieth_,iologies.
and tools, software projects seem to continue to grind out production-,qlgmeered

code at about the same old 8 to 15 delivered lines of source code per staff-day.

Yet, as Boehm also points out, if software is judged using the same criteria

as hardware, its productivity looks pretty good. One can produce a million

copies of a developed software product as inexpensively as a million copies of a
computer hardware product. The area in which productivity has been slow to

increase is the development and sustaining phases of the software life cycle.

Profit-making organizations may amortize their software development and

sustaining costs over large customer markets, so that low development produc-

tivity is mitigated by larger and larger markets. But government agencies, their
contractors, and non-profit organizations must rely on increases in productivity

to avoid costs and improve quality. Development and sustaining costs are not
often recovered by duplicating the product many, many times.

Software development and sustaining productivity has been the subject of

many articles to date. It is also the focus of this publication, which is, in a sense.

a mathematical proof of Brooks' [2] assertion that "there is no silver bullet."
The avenues for productivity improvement have been adequately summarized

by Boehm [1] as

1. Get the best from people.

2+ Make the process more efficient.

3. Eliminate steps where possible.

4. Stop reinventing the wheel,

5. Build simpler products.

6. Reuse components.

All of Boehm's steps above, except the first, are human-informatmri'-mput

reductive. Software tools, aids, suppor'_ environments, workstations, office au-

tomation, automated documentation, automated programming, front-end aids,

knowledge-based assistants, information hiding, modern programming practices,

life-cycle models, common libraries, application generators, next-generation lan-

guages, etc. all save labor by supplying or modifying information at a faster
rate or more reliably than can be done by humans.

Software zs information for computers that _s made from znformatwn sup-
pried by people. Some of the human input information may be new, and some

R. Tausworthe
JPL
4 of 41

maybe reused,perhapsalteredfor thenewapplication.Someof th,,output
reformationproductisthusnew,andsomemayderivefromlegacy,perhapsal-
teredforthefunction intended. It is therefore intuitive to think of productivit}

in terms of the amount of information appearing in the output product relative

to the effort required from humans to supply the needed information relating

to that product. We shall more precisely define productivity using this concept

a little later: for the present, let us merely acknowledge that software produc-

tion capacity increases when the effort required from humans in supplying the
information needed to construct a given product is reduced.

It is reasonable, then, to put information and communication theory to work

on the theoretical capacity of productivity. In 1949, Claude Shannon [3] proved
that communications channels have theoretical information transmission rate

limits that are influenced by their channel configurations, signal-to-noise ratios,

and bandwidths 1, Humans and computers developing software are communi-

cations devices and channels, and therefore subject to Shannon's law. Humans

are capable of transmitt2ng informal,on only at a rate below their capac_ly hmzt

[4]. The channel may transmit more data volume than the actual number of in-
formation bits due to redundancy and encoding; however, the information rate

of bits emanating from the output (i.e.. the output entropy) may not exceed
the rate that information bits are input (the input entropy). In the parlance of

information theory and thermodynamics, there can be no "Maxwett's demons"

in the channel.

When building an information product, part of the input information needed

is in the form of "black box" specifications of functional and performance re-

quirements. Some of this is new, supplied by humans, and some of it is old.
retrieved from other existing sources. But which portions of the old informa-

tion are to be reused, and how they are to be located, extracted, modifed, and

integrated with the new information comprises more new information that also

must be (largely) supplied by humans.
Once a new or modified software product has been developed, both it and its

components are candidates for reuse in forthcoming software products. Thus.
the repertoire of reusable objects may grow without bound as the industry wends

its way into the future. Reusable objects may be envisioned as new functions ap-

pended to an extensible implementation language that may be used in the next

project. The conceptual minimum information required at the human input
interface is merely that required to select the language features to be used and

to integrate them properly into the operating product(s). In the ideal, we may

look to automated and knowledge-based tools to supply the other necessary

searching, mani.pulative, transformational, and inferential information associ-

ated with matching function-to-language-feature correspondences, integration

and construction of the product, and validation.

The question arises, then, can the information content of the output products

1The most popular form [3] of Sharmon's law is Co = B Ioga(l + ..q/N).

R. Tausworthe
JPL
5 of 41

_EVELOP_IEN_

CIIANNEL 1 -_'-"-'_'_

USEAND
EVALUATION

CHANNEL

Figure1: Anabstractproductlifecycleprocess.

insuch an ideal software environment continue to grow at a faster rate than the

input rate, or is productivity growth limited by some form of "Shannon limit?"

If so, what are the factors which control that limit? This publication develops

a framework for answering these questions and characterizing the solutions.

2 THE COMMUNICATIONS ANALOGY

The discussion above characterizes the software development process as one in

which, as in Figure 1, various kinds of information are supplied by humans

toward implementing a product whose form is also information: documents,

programs, parametric data, databases, and test data. Software development is
thus an Information-Input/Information-Output (I30) process. In like fashion,

the use and evaluation of software products are also I30 processes. Even the

behavior modification that shapes needs based on the level of satisfaction derived

from use and evaluation of the products is, to some extent, an 130 process.
An I30 process may thus be portrayed, for purposes here, as a noisy com-

munication channel with the following traits:

I. Transformattonal. Output information (i.e., the product) exists in a dif-

ferent form than provided in the input (i.e., requirements).

"2. Dtstorttve. Some input requirements may be implemented differently than

R. Tausworthe
JPL
6 of 41

intended.

3, Erasure. Some of the input requirements may not have been implemented.

4. Spurtous. Some features implemented may not have been specified in the

input requirements.

5. Random delay. The transport time from requirements to product is a
variable time, only partially predictable.

6, Random cost to use. The cost in dollars and effort needed to transform

requirements into products is only partly predictable. The cost of products

is the cost of operating the channel.

7. Non-stationary. Tile uncertainty aspects of the channel vary with time.

As is true of other communications systems, the channels themselves must

be constructed before they can be used, at a certain cost. laO channels consist of

people and machines working in randomly connected orchestration. Moreover.
the 130 channels that are used to construct products are themselves the products

of other I30 channels. Thus, if carried too far, the analogy becomes more

intricately interconnected, complex, and difficult to analyze, but perhaps more
true to life.

Software problems restated in terms of I30 channels are:

• channel costs are too high.

• throughput delay is too long.

• input,/output correlation is too low and difficult to validate.

• input and output are not entirely quantifiable, consistent, nor tangible.

• cost, delay, and throughput are not entirely predictable nor controllable.

More microscopically, an overall communications channel may be viewed as

an interconnected network of noisy components and sub-channels. In analogy,

high-level software problems decompose into smaller interrelated contributory

problems, deriving from many sources. During the conceptualization, require-

ments capture, and alignment processes of the product cycle, distortion and

noise (faults) derive from unknown or unrecognized needs, unexpressed needs,

wrongly expressed needs, conflicting needs, non-stationary needs, and inability

to quantify and articulate needs. During the implementation and alteration
stages, noise comes from misunderstood or ambiguous requirements, conflicting

views of utility, inability to simulate a product in entirety, inadvertent omis-

sion, conflicting requirements, and unfeasible requirements. During the testing

and validation stage, difficulties arise in the combinatorial impracticality of cer-
tainty, in the need for an operational environment in some actual or simulated

R. Tausworthe
JPL
7 of 41

f,_rm,in theneedfor tile productin asimulatedor completed,matureform.
andintheneedfordefinitiveacceptancecriteria.Ultimately,theevaluationaud
et_li_;htemnent processes require products and operational environments in con_-

[.,leted or simulated form. and are exposed to imprecise, subjective, intangible
satisfaction criteria.

Typical considerations which relate to, contribute, or cause these problem_
are the _'omplexity of the 130 channels and the products they produce, the

stochastic behavior of people, and rapidly changang hardware and software

technology. .Moreover, our understanding of the software process is still in

its evolutionary stage: Tools, environments, and systems are only moderately

sophisticated. Methods, models, and theoretical bases for development and

product analyses are sparse and largely invalidated. Preparation of products

for legacy has often not been properly consummated during development. The
reuse of inheritance has been difficult, even when legacy goals are adequately set

and fulfilled. Automated knowledge bases for software engineering and applica-

tions domains are in their infancy. The transmission medium (i.e., human lan-
guage) lacks precision in many contexts. And, finally, the skill base of software

personnel has not yet been adequately oriented to a disciplined, standardized,

industrial-strength engineering approach.

Feedback is commonly used in electronics to stabilize performance. How-
ever, the high costs and long delays in 130 channel usage tend to inhibit firm,

immediate feedback for risk of fomenting an unstable situation and incurring

yet higher implementation costs and longer delays.

The communication system approach to improvement of channel perfor-

mance, however, is simple and straightforward:

I. Measure and characterize the channel and its parameters.

2. Expect transmission to be distorted, noisy, and delayed, and provide ap-
propriate compensation.

3. Design the information throughput rate to be within channel capacity

(as, e.g., Shannon's limit, or other formula applying to the particular
channel_).

4. Remove redundancy in the source information before transmission.

5. Make the transmitted information be resilient to channel disturbances by

using effective encoding and decoding techniques.

6. Transmit information through the channel with as great a signal force as
possible.

7. Take steps to reduce disturbances within the communications channel.

2Softwaxe production capacity in the absence of fault generation and correction is given by

Eq. 25.

R. Tausworthe
JPL
8 of 41

r
R _ IMPLEMENT-] ,__'

ALTE._T_O_ L--J_ /

r _

J
t

L

t
I
I

I
I
I
I
I
L

f BE""V,OR
LMomF_CATIONJ---

I _ I TEST 7

NLIGHT EVALUATION]_

;'------

E CRITICAL LOiP

ACCUSTOMIZATION

USAGE

EACH BOX REPRESENTS .4 CHANNEL

Figure 2: The I30 life-cycle channel model.

8. Use feedback to correct errors.

The goal of this publication, then, is to characterize and quantify software

production in analogy with communications theory, and thereby _ terms of
measurable, causal, and controllable factors.

3 THE SOFTWARE CHANNELS

A basic idealized production configuration was depicted in Figure t, where needs

are faithfully projected m the form of information through the development

channel to yield information products, which are then used, evaluated, and may

lead to a certain level of satisfaction. Use and accustomization beget behavior
modification, which, in turn, elevates the original set of needs toward higher

levels of automation. Not present in this ideal are the intrinsic distortions,

faults, and other flaws that produce less-than-ideal products, incomplete levels
of satisfaction, and, perhaps, unfortunate modifications of behavior that limit

the tendency toward higher automation.

R. Tausworthe
JPL

9 of 4l

A refinementof thisconceptisshownin Figure2, wheretheprocessesas-
sociatedwithchannelimperfectionsaredisplayedmoreprominently.Needsare
projectedthrougha capturechannelto producea requirementsspecification:
requirementsaretransmittedviaanimplementationchannelinto tileproduct
set;theproductsetis put througha testingchannelto reveal(someof the)
errors;errorsarefedintothealterationchannel,which(partially)corrects the

product set: evaluation of the product set against stated requirements often re-

veals shortcomings, leading to an enlightened state; and enlightenment guides
the process of requirements realignment. Usage of-the product set. as earlier,

produces a level of satisfaction (not necessarily complete), which alters the state

of need through behavior modification.
Each of the information transmission channels and information sets can be

further dissected and detailed for better understanding of the transformation
processes and better accuracy in modeling the software phenomena.

The critical, and perhaps less philosophical, portion of the refined software

channel analogy is shown inside the dashed lines of Figure 2. This portion com-

prises the software development and sustaining segments of the life cycle. Note
that the analogy can be made to simulate information transmission aspects of

the "ordinary waterfall" life cycle, incremental development, rapid prototyping,

evolutionary enhancement, and "spiral" life cycle paradigms merely by suitable
definitions of channel characteristics. In the next section, the software channel

analogy is used to develop a refinery model of software productivity, to which in-
formation and communication theory are applied to derive statistical limitations

on human capacity to produce larger and larger software systems.

4 THE IMPLEMENTATION CHANNEL

The assumed software implementation components are illustrated in Figure 3.

Five forms of information input by humans are identified: requirements (func-

tion, performance, and constraints), transformational (design and coding), com-

binational (integration), corroborative (validation and verification), and man-

agement (status and control). Each of these potentially contains imperfections
in the form of accidents (inadvertent, random faults) and distortions (deliber-

ate, non-random faults). Together, these latter two constitute a sixth type of

information input by humans that we shah collectively refer to as nozse. Also

shown is the set of products resulting from the inputs.
Generation and application of the above input information to tile software

implementation channel is assumed to constitute the entire expenditure of hu-

man effort. Information generated by humans is mental, verbal, and docu-

mentation, and only the last of these is amenable to measurement. We must,

therefore, hypothesize that the capture of information in memoranda, docu-

ments, code and comments, parametric and test data, etc., is representative of

and correlates significantly with the total outlay of effort.

R. Tausworthe
JPL
10 of 41

TEST '_

NOISE -- 3ESIGN) ,, iNFORMATION , V&V ,'

/ I I I_ coo,No ; I I t l.
// I , INFORMATION / 1 I "

PI=IOOUC _Qa_:n!af_'tFR _ COMB NE:I _COR_OBGQATOR '-d'' PRCDUCT '

/ MANAGEMENT

, I N I::0 R M/",T 1ON //

Figure 3: The software production refinery.

Output products are viewed as condensations, transformations, and refine-
ments of the information that came into the environment; hence, we refer to the

implementation process as the Software Refinery. Productivity improvement

in the refinery is tantamount to reducing the amount of human-supplied input

information required for a given output product set.
Effort-intensive input information requirements will be minimized by elimi-

nating redundancy and by reusing existing information whenever feasible. For

example, if a system has a requirement for a word processor of a known type,
then the single expression "Wordstar 3 4.0" could be used to convey unambigu-

ously all the characteristics that the cited word processor possesses. Moreover,
if there were only 1024 = 21° word processors in the world, only 10 bits would

be needed to distinguish Wordstar among its competitors. Only exceptional and
incremental information would be then be needed to specify a slightly different

capability desired. Additionally, since Wordstar already exists, further infor-
mation relating to design, implementation, and testing is not required, except

where it relates to the integration of that package into the system being built.
Also, when documents must be developed to contain previously generated in-

formation (_.e., "boilerplate"), the only information conceptually required from

3Wordstax is a registered trademaxk of MicroPro, Inc.

J ,

R. Tausworthe
JPL
I1 of 41

tilehumaJliswhereto findtheboilerplate,howmuchof it to use,whereto put
it. andanynecessaryalterations.

Fortile remainderof this publication,weshallfocuson that reformation
leadingto theprogram(set),or product yzeld. Therefore, effort and informa-
tion used to produce documents is limited to that which is yield related. These

include requirements documents, design specifications, project plans and sta-

tus reports, test plans and procedures, and the like; preplanning, applications.

operations, and maintenance documents are excluded at this time. We have

hypothesized that the information content of these entities correlates strongly

with the total project information. By measuring the information contents of
software project documents and output yields, then, quantitative relationships

among input information and output yield may be established.
Transformational and corroborative information input needs are potentially

reduced by reusing elements of previous designs and code whenever feasible. In

the ideal, fully automated case, this reduction could be almost complete: au-
tomated catalogs of solved problems would be searched using knowledge bases

having extensive application domain-dependent inference and design rules that

match functional and performance requirements with known solutions and de-

signs, designs with working code, etc. In the ideal automated software refinery,

the amount of input noise, and thus the need for corroborative information,
could also be drastically reduced. The ideal software refinery is shown in Fig-
ure 4.

Although much of the integrative information would also conceptually be

supplied by automation, some will nevertheless still be required from humans

to relate interdependency among functional features, data flows, and orders of

precedence.
We model the software production refinery in the form of an extensible lan-

guage. That is, the human information input 2" is used to develop the output

yield 3,' from new information and from instructions to reuse existing intorma-

tion and previously developed parts that operate within given time and data

precedence constraints.
The distinguished components of the input 2" are (Figure 3)

g = Z_ O Z_ U 1_ UZi UZt 02.., (I)

These terms represent, respectively, requirements, design, code production, inte-

gration, test (including validation and verification), and management informa-

tion sets. Each of the input sets potentially contains faulty information, or
noise.

In particular, we shall assume that the requirements term, 2._, can be isolated
to contain the functional, performance, and algorithmic specifications and con-

straints, so that, in concept, a fully automated programming environment could

produce the output yield in the current refinery without further information.
We define the inherent product spec,ficatwn, 2"', as the least practical infor-

mation required to specify the output yield uniquely. It is the mapping of the

R. Tausworthe
JPL
12 of 41

DOMe. IN KNOWLEDGE ,I

: INFERENCE RULES J

! DESIGN RULES i

"_-r l- i- J_,, ,_IINNTTER_RcADTTIoVNE/I t RA;OR I _

_i I tNVE_NT_ORYOF

I _SOLVED [t FIEUSABL E I--

L_ .RoB,E s J

Figure 4: The ideal software refinery configuration.

input information through the production transformation

_(z) = z" (2)

Conversely, that subset of the input, denoted 2", that traces to the as-built

product is defined by the inverse production transform,

_-l(Z') = Z (3)

Note that this traceability may not necessarily be direct: Constraints, perfor-

mance requirements, and design goals in Z certainly influence the resulting Z';

but it may be difficult indeed to correspond any tokens of the output product
with tokens of the input information. Therefore, 2" should be regarded as that

(amended) form of 2" that got built.
The sets of fulfilled and unfulfilled requirements are described by

zz = z. o z (4)

and

I, = I. - I z (5)

10

G'7 _"i:_); ""iZ;_E IS R. Tausworthe
£;i': _'; . , ,::_. :4.ITY JPL

13 of 41

rospectively.Thatis,ZI is that portion of Z, that got implemented, and L is
the remainder of Z,.

The executable program, or apparent yzeld 32 will include the inherent prod-
uct specification, 2", as well as the I," of each of the n modules ill the refinery

invoked by Z', as transformed by the compiler and linker into a functioning
unit. 3; will normally be sensitive to compiler and linker characteristics, such ms

type and degree of code optimization, extent of program and data segmentation.
etc. Thus, we define the _nherent funchonal y,eld, 32", as the join of inherent

product specifications over all components comprising the final product.

Y" = 0 L" (6)
t=0

in which/'; = Z'.
We denote the sizes of these sets by

It = [Z_] for k = r,d,c i,t,rn (7)

I = [Zl <l,+l_+l_+l,+It+I,_ (8)

r = Io = IZ'l (_)

I, = 12";I for/= 1 n (10)

Y = lYl (I.l)

Y" = _t," (12)
i=0

by Shannon's law, and a fort_orz I" <_ I. Also, I" _< Y"Naturally, I" <_ I,
because Z" C 32".

i

Input information is perhaps most meaningfully measured in terms of the

chunks [4] that humans treat as units of information in memory and recall.

However, the mechanism for chunking is not yet well enough understood (at

least, by the author) to be able to compute an input information chunk measure.

Rather, the first-order entropy [3] based on word and symbol, or token, counts

and vocabulary usage will be used:

Rj,

Hi = -Epkj log2pk., fork=r,d,c,i,t,m. (13)
i=l

I_ = N_Hk (14)

Here, Rk is the size of the Repertoire, or vocabulary, of words and symbols

used in Z_, pk,i is the relative frequency in usage of the i-th word or symbol in

that repertoire, and Nk is the total number of words and symbols used. Since
words and symbols represent first-order chunking by humans, the information

first-order entropy measures should correlate strongly with information mea-

sures based on chunking. Evaluation of higher-order entropy (phrases, syntactic
forms, etc.) may be appropriate for study at a later date.

R. Tausworthe
JPL
14 of 41

Segmentsof documents that are included from other sources should not be
counted this way, because tile apparent information content would be higher

than that actually supplied by humans (this time) for its reuse. If such por-
tions carl be handled separately, tile true human input involvement can more

accurately' be approximated.

We similarly characterize the inherent input content Z ° and output yield y"

in terms of the features of tile extensible language. Let R be the number of

unique operators a,nd operands that already exist in the current refinery' lan-

guage repertoire, or vocabulary. This number will include both the basic set of
built-in functions, as well as every function that has so far been made available

to the refinery for reuse (every new function produced is a candidate for reuse,

if applicable and feasible). Next, let n denote the number of unique refinery

operators of this repertoire actually required for implementing the curreut ap-

plication. Then, let d signify the actual number of unique input/output data

operands appearing in Z', and let ,\: be the total number of operators a_d data
operands appearing in 2TM. Finally, let _ represent the average inherent yield

of the n refinery operators invoked by 2".

The inherent product information 2TM is just sufficient to specify the product

yield; in this, it is a translation of Z_ into specific refinery terms. It specifies
the needed functions of the repertoire, the inputs and outputs of each, and the

integration of these elements into an appropriate sequence of instructions. We

note, then, that Z" is refinery-dependent, because it depends upon the richness

of the repertoire at the time of use. To a first-order approximation, Z" will be

equivalent 4 to N instances of n + d unique operator/operand types arranged in

proper order. The minimum average number of bits needed to specify any one of

the R operators of the current refinery or d data elements of the current operand
vocabulary is the first-order entropy' H ° of the refinery and data repertoire.

Thus, in analogy with Eq. 14,

R+d

I" = N H" = - N Z Pi l°g2 P' (15)

< Nlog2(R + d) (16)

However, since usage statistics of the refinery and ensemble of applications are
unknown at this time the measure above can only be approximated, For prac-

ticality and consistency across languages, the size of the inherent product speci-

fication will hereafter in this work be approximated s by its upper bound above,

4One may need to normalize [* acrc_ss semantically equivalent syntactic constructions of

the refinery la_nguage. For example, the C language form "x = x ÷ 1" contains S tokens,

where_ the form "x++" cont,_ins only 2. The information content of the two is the same.

5Since I* only appears in the productivity equation in ratio with Y*, defined in Eq. 18,

which is also evaluated in the same way, error due to this approximation will normally be of

second order importance.

R. Tausworthe
JPL
15 of 41

:also known as the ttalstead program volume [5],

I" = N [ogo(R + d) (17)

Note that language processors, for practicality, generally represent tokens using
fixed-bit-length internal representations, rather than by variable, frequency-of-

use-derived (entropy based) ones. This practice also requires the use of at least
log_(R + d) bits per token.

Finally, we express the size of the inherent functional yield as

Y" = I" + ,W: (18)

The software refinery model thus provides absolute relationships among the

current refinery vocabulary size and the average yield of those operator modules
in the refinery that were used. Note that I', Y', n, and Y_ can all be determined

as measurable properties of the software refinery and the current application

program. The reuse portion of the product yield, Y" - I °, should be measured

in the refinery language that would be used to reimplement it, regardless of the
language used originally to implement it.

5 THE PRODUCTIVITY EQUATION

Let W denote the total work effort (measured in work-months) required to

develop an output information product yield y from a given information input
set 2"supplied by humans. Productivzty is defined here as the inherent functional

yield per unit work, in total bits per work-month,

y*

P - W (19)

The use of the inherent functional yield, Y', in this definition, rather than the

actual apparent yield, Y, which also includes data yield and compiler quirks, is

quite arbitrary, but conforms to a practice analagous to counting "'executable

lines of code," as opposed to "total lines of code." Although Y may perhaps

be easier to measure than Y', it is, nevertheless, an inadequate indicator of

productivity because of its compiler dependence: a better compiler would seem
to lower productivity 6.

The average rate at which a given population generates information of a

specified type is their mean work capacay, C, in bits per work month,

I
C = -- (20)

W0

SThis fact was pointed out to the author by Robert D. Tausworthe of Hewlett-Packard.

Inc.

R. Tausworthe
JPL
16 of 41

whereW0 is that amount of work required to generate the information Z in an

ideal environment where locating existing information, capturing new ideas, and

preparing these for use are immediate (i.e., Wo is measured as the actual work
effort minus the location, capture, and preparation effort). C conceptually.

then, is a function of problem complexity, human intellect, experience, skill,
motivation, work conditions, staff interaction, and emotional and psychological

factors.

We know from experience that human capacity has a linfit, so we define

the potent2al mformat_on capaczty, Co, as the ideal value of C that could be
achieved if the workers were to be relieved of adverse problem, environment,

and human factor encumbrances, and were working at a maximum reliable pace.

The unitless ratio
C

u = _ ___1 t21)

then represents a mental acuity factor. Since labor wasted in capture and lo-
cation of information, etc., has been eliminated from/J, it is only independent
on environment and tools to the extent that these stimulate individual work

capacity. We may note that _ will tend to be greater when 2" is produced well

within the skill, experience, and understanding of the staff, at a motivated pace

of work, and in a smoothly operating and happy organization. However, _ will
tend to decrease with other attributes, such as application complexity [i] and

staff size [6]. Much of the behavior of/J has been calibrated in various software
cost models, where a variation of 500:1 has been noted as necessary to span the

range of contributory factors. Consequently, the value of/, for some projects

may be on the order of 10 -a.
Next, we define requzrements efficiency, p, as the unitless ratio of inherent

product specification and requirements information measures,

I"

P =)7 < 1 (22)

This ratio indicates the level of superfluity between information specifying the

as-built product and that contained in requirements information. It is partially
a natural characteristic of the requirements and refinery languages being used,

but also will depend considerably on the style of the individual(s) writing the

requirements, the complexity of the problem, the extent to which fulfilled re-

quirements lead to measurable product specifications, the extent to which stated

requirements are fulfilled, the amount and distinguishability of new and reused

requirements information, and other factors. Measurements of p are needed
to calibrate the effects of these factors, and to establish norms for its use as

a requirements efficiency indicator. A ball-park figure for p based on a few
document-to-code size estimates is about 0.1.

The ratio of requirements information to total input information reflects the

relative degree to which design, coding, test, and management information are
required from humans for a given problem. The ratio of W0 to I,V is the effort

R. Tausworthe
JPL
17 of 41

efficiency in location, capture, and preparation of information. Together. these
ratios express the efficiencies of methods, tools, and aids relative to an ideal en-

vironment. Labor-saving methods, tools, and aids are those that tend to reduce

the amount of effort required to generate, capture, or prepare a given amount
of information. Examples are word processors, design languages, automated
graphics, and data dictionaries [nformation-reductive methods, tools, and aids

are those that tend to reduce the amount of mformatzon that is required to be

generated by humans. Examples here are symbolic notation, automated design
assistants, and test case generators.

We combine these two effects into the tool factor, r, defined as the unitless
ratio

(w0)r = -_ < 1 (23)

This coefficient reveals the amount of human information, and thus labor, that

potentially can be eliminated by methodology, automation, and practice. It
provides a simple means by which the effectiveness of solution methods, tools,
and engineering processes can be quantified by actual measurements. Note

that r is very likely to be influenced by the amount of information that must

be processed; the greater [is, the greater the difficulty of the human task in

coping with it. Thus, we may expect to see the effectiveness of well-designed

tools increase as the size and complexity of the project it is applied to increase.
A rough estimate of r from some document page and approximated human
effort ratios is about 0.01.

Finally, the refinery language advantage, A, is defined as the unitless ratio

of the reused portion of the output functional yield to the minimum product
specification:

v" - nT:
A- I" - I" (24)

This coefficient is quantifiable from token and vocabulary counts in the current

refinery model. It represents the information gain factor due to reuse, and

signifies how large a product yield can be generated from a minimum product
specification in a given refinery environment. Because it is a unitless ratio, A

should be less dependent on a particular refinery than are I" and Y* individually,
since common tendencies tend to cancel out. A value on the order of about 15

was measured for a group of small C programs using the ANSII standard library
functions.

The productivity equation then follows straightforwardly:

P = Coppr(l + A) (25)

< C0(1 +A) (26)

The productivity formula is intuitive: the smallest sufficient requirements

definition, the most effortless implementation, and the most propitious usage of

R. Tausworthe
JPL
18 of 41

toolsandmethodologiesyieldthe highest advantage; reuse of previous products

as new available refinery' features yields a higher language advantage.
The tipper bound above would be replaced by equality under the condition

,ape = 1. a situation clearly' requiring the existence of automatic programming.

The bound thus shows that the effectiveness of automated programming envi-

ronments will be determined by the extent of reuse of components in the refinery'.

Moreover. the only route to unltmzted productzvtty growth +s through the effect+re

reuse o e tncreaszngly larger and larger software components.

6 LANGUAGE ADVANTAGE TRENDS

[t is a remarkable fact that there are statistical laws in natural and computer

languages that relate the total number of occurrences of language token types

(word types in natural language, and operators and operands in computer lan-
guages) to the vocabulary of distinct types used. Laws of this nature were first

studied by Zipf [7] in the 1930's in connection with natural languages. Others.

notably Halstead [5], Shooman [8], Laemmel [9], Gaffney [10], and Albrecht [11],

have extended the study' to computer languages and specifications.

The assumption of the method is that the specifications and the progratns
that embody those specifications are two descriptions of the same thing. Knowl-

edge of one correlates with knowledge about the other. For example, it is rea-

sonable to expect that a statement of basic requirements for a program includes

an itemization of its inputs, processing, and outputs, viewed externally. This ex-

ternal statement translates, through the works of Zipf, Halstead, and the other
authors cited above, into approximate measures of the output product yield.

These measures generally agree within about a factor of 2; hence, we introduce

a factor q" to account for the difference between Zipf's first law and the true

refinery model token length characteristic.
Zipf's first law, for example, predicts the approximate token length _V of T"

as the value

= (n + d)['y + tog(,_ + d)] (27)

where -f is the Euler constant, 7 = 0.57721 The factor (= ,V/N makes

the equation exact, by definition:

1

N = _(n + d)[_ + log(. + d)] (28)

The token-length correction factor (fluctuates from program to program, but

ranges approximately between 0.5 and 2.

The refinery language advantage, therefore, is

(nY,_
= (29)

(n + d)log2(R + d)[7 + [og(n + d)]

R. Tausworthe
JPL
19 of 41

(Y_ log 2

< log n log R (30)
ii

(}'. log '2

< log 2 n (31)

which, as may be noted, is limited only by average utilized module yield and

vocabulary size. As they stand, these expressions are not statistical: A,(,'._:.

and n are determined by the particular program. Averaging A over an ensemble
of programs would yield a statistical bound, however, of the form

< (r:- tog 2
log 2 _ (32)

for _ = E(A) and appropriate[)' defined _ and _. This statistical form of the

bound reveals that. in order for the refinery language advantage (and thus,

productivity) to grow without bound, the average yield of refinery modules

being used by applications must grow faster than the square of the logarithm
of the number of refinery modules being used. That is, it must happen that

modules of increasingly higher yields are regularly added to the refiner)' and

regularly used, A software refinery with a statzc, non-expandin 9 library _mposes
a fixed productivzty limit on its workers.

7 FUTURE WORK

The work reported here is a part of the newly-begun NASA Initiative in Soft-

ware Engineering (NISE), and is coordinated with other NISE investigations,

notably the development of a dual life-cycle paradigm (separating, but interre-
lating management and engineering processes), the development of a dynamic

software life-cycle process simulator, behavioral researches into the performance

of humans in the software process, and the synthesis of effective supporting
methodologies, tools, and aids.

This first publication reveals only a few rudimentary aspects of the software

life cycle process, here modeled as productivity channels refining crude infor-

mation into highly distilled products. The principle results apply only to the

implementation channel, or software refinery. The effects of information noise,
the stochastic behavior of people, the detailed character of the other individual

component channels, and the dynamic behavior of interacting channels remain
to be analyzed and validated.

For the implementation channel, near-term work remains to evaluate Co, /z,

p, r, and A in a static, low-noise context. Insight into Co and/_ may be sought

in human behavioral research journals. Later work may involve experiments in
collaboration with academic researchers.

Typical p and r values may be determined by measurement of documents

and programs in existing project libraries for which effort statistics are available;

R. Tausworthe
JPL

20 of 41

regressionwithperceivedcontributoryfactorswouldthenquantifyeffectsand
suggestavenuesfor productivityimprovement.Studiesof r and p may be
expected to calibrate benefits of selected methodologies and tools.

Still other studies remain to examine the statistical behavior of _ as a fun,'-

tion of the refinery size and reuse policy, to determine whether there are natural

limits to productivity growth, and thus, to resolve the question posed by the

upper bound in Eq. 31 above.
Further research will quantify' the behavior of the other component chan-

nels of the production life-cycle model, as well as the dynamic interaction of

information flows in the model, notably those within the critical loop shown in

Figure 2.

8 CONCLUSION

This publication has developed a model of the software implementation process

that formulates productivity as a product of tangible, definite, measurable, and

meaningful factors. The model characterizes productivity as stemming from

five weakly interrelated factors: human information capacity, mental acuity', re-

quirements specificity, methodology and tool efficiency, and refinery language

advantage. Each of these factors was shown to have absolute, explicit, and
measurable bounds: Human performance is limited by inherent human channel

capacity and by the degree of mental acuity that can be achieved toward real-

izing that capacity. Requirements efficiency is limited by the minimum as-built

product specifications and the extent to which requirements specifications can
be freed from extraneous, superfluous material. The effectiveness of tools and

methodologies is limited to the amount of human (labor) input that can be

avoided. And finally, the effectiveness of a programming environment is limited

by the average growth in yield of modules in that environment.

These factors serve as absolute standards for comparison purposes: /J reveals

how well the staff are meeting their potential: p expresses the level of superfluity

of requirements; r quantifies the effectiveness of methodologies, tools, and aids;
and)_ indicates the power of the refinery. Use of these standards will lead

to meaningful tradeoffs and, potentially to an eventual optimized software life

cycle.

R. Tausworthe
JPL
21 of 41

References

[1] Boehm. Barry W., "Improving Software Productivity," Computer. IEEE

Computer Society, Vol. 20, No. 9, 1987, pp. 43-57.

[2] Brooks, Fred P., "'No Silver Bullet--Essence and Accidents of Software

Engineering," Proc. IFIP Congress 1986, North-Holland, 1986. pp. 1069-
1076.

[3]

[4]

[5]

[6]

[7]

Shannon, Claude E., "Communication in the presence of noise." Proceed-
ings of the LR.E., Vol. 37, 1949, pp. 10-21.

Miller, G. A., "'The Magical Number Seven, Plus or Minus Two: Some

Limits on Our Capability for Processing Information," Psychology Review,
March, 1956. pp. 81-97.

Halstead, M. H., Elements of Software Science, Elsevier North-Holland,
Inc., New York, NY, 1977.

Brooks, Fred P., The Mythical Man Month, Addison-Wesley Publishing
Co., Reading, MA, 1975.

Zipf, G. K., The Psychobiology of Language: An lntroductzon to Dynamzc

Philology, Houghton Mifflin, Boston, MA, 1935.

[8] Shooman, M. L., Software Engineering, McGraw-Hill Book Co., New York,

NY, 1983.

[9]

[10]

[11]

Laemmel, A. E., and Shooman, M. L., "Statistical (Natural) Language

Theory and Computer Program Complexity," Polytechnic Institute of New

York, Report POLY-EE/EP-76-020, August, 1977.

Gaffney, J. E., "Software Metrics: A Key to Improved Development Man-

agement," Computer Science and Statistics: Proc. of the 13th Symposzum

on the Interface, Springer-Verlag, New York, NY, pp. 211-220.

Albrecht, A. J., and Gaffney, J. E., "Software Function, Source Lines of

Code, and Development Effort Prediction: A Software Science Validation,"
IEEE 7kans. on Software Engzneerlng, Vol. SE-9, No. 6, November 1983,

pp. 639-648.

R. Tausworthe
JPL
22 of 41

THE VIEWGRAPH MATERIALS

FOR THE

R. TAUSWORTHE PRESENTATION FOLLOW

>-
0
Ou_
-.I U')

___1
I.U

Ec

O_
U

<

GO
CO

I
_0

I C'3
I.-- I
L)_

INTENTIONAU,.Y

R. Tausworthe
JPL
25 of 41

R. Tausworthe
JPL
26of 41

I

,---?

.J
I1
"1

_Z _0

_=
-_-_ _

__< _<

_o__

om_zo

:Z_PP

R. Tausworthe
JPL
27 of 41

OO
CO

!

_o

L),-
rv-_

I

R. Tausworthe
JPL
28 of 41

I

I

<

uJ I
rr I

] _'P- i
a. I

(0 1

O_ -J uJ

e

0

_ m

IJ.l I N X

Z "_ I _" o
uJ_ l I-- r_

I.I. _w I '_ ,_
IJ.l Zw N ,,,

0

F-

J =
m

Z

=:2
0_-

-!-_

co
(3o

I
?o
_-?

R. Tausworthe
JPL
29 of 41

c/)
I.U

Uz _ _ o_ .-
_')n.

fr

z E _ _ o
",'z
_ o _ _ _: _lz o

I
_0

m

R. Tausworthe
JPL
30 of 41

8

(D

(

m

Z

_ _o_o_
o _ __ oo_

5°_ o __

_ o __o

-IZo , ,,,,,,__

0 • • • • •

I
r-.. o

-?
L)--

R. Tausworthe
JPL
31 of 41

--_o,_ _
,_ r_ fr

CO
CO

!
CO o

"li"I

R. Tausworthe
JPL
32 of 41

R. Tausworthe
JPL
33of 41

I
I-- I
U_

R. Tausworthe
JPL
34 of 41

LIJ

_lm • • •

-- I
--0

I

k.)--

R. Tausworthe
JPL
35 of 41

I--

o

,,

_o__ _o
o - "- u ,', z -1_=
I-- H , H II II ii , 0
__ , -- II

Z • * >- >- t_ _. _"

U w w

.J

m

Z

>.

Z
I

-I-
l--

W
n"

_=

w
>
0

o.

I

0
I--

Z
uJ
>

l=U
"I*"
I--

(3O

_-?

R. Tausworthe
JPL

36 of 41

LI.I

I

R. Tausworthe
JPL
37 of 41

To

R. Tausworthe
JPL
38 of 41

oo

_o

R. Tausworthe
JPL
39 of 41

CO

.o_

z ___ I

0 0 _
Z

_ _ +

z __ >-<I: N D

0 II II II II II II Z

)- .¢
,¢ n.- ,-- "o Z E ''-_ ._
I-- I>, ,,,
0 -r
Z I-

,=I

=I

" V

II

,.<:

LLI
._I
n_

I.U
O0

LM
n-

u=
0

--I "-
w_D

7o
-J

I.I.I"-"
_Z

n" :I:
ual-

_1--"

il
_ 1.1.1

>.m

Z TM

O0

0--
_0
(.9)-

ill

Z _

I-
Z z

Z_

R. Tausworthe
JPL
40 of 41

CO
O0

'To
i_. °3

I
L.J_
¢'v'_

R. Tausworthe

JPL
41 of 41

KNOWLEDGE-BASED ASSISTANCE IN COSTING THE SPACE STATION

DMS

Troy Henson and Kyle Rone

N91-10611

IBM Corporation _?
3700 Bay Area Blvd / _

Houston, TX 77058

ABSTRACT

The Software Cost Engineering (SCE) methodology developed over the last

two decades at IBM Systems Integration Division (SID) in Houston is uti-

lized to cost the NASA Space Station Data Management System (DMS). An

ongoing project to capture this methodology, which is built on a founda-

tion of experiences and "lessons learned", has resulted in the development

of an internal-use-only, PC-based prototype that integrates algorithmic

tools with knowledge-based decision support assistants. This prototype

SCEAT (Software Cost Engineering Automation Tool) is being employed to

assist in the DMS costing exercises. At the same time, DMS costing serves

as a forcing function and provides a platform for the continuing, itera-

rive development, calibration, and validation and verification of SCEAT.

The data that forms the cost engineering database is derived from more

than 15 years of development of NASA Space Shuttle software, ranging from

low criticality, low complexity support tools to highly complex and highly
critical onboard software.

INTRODUCTION

Software cost engineering (SCE) is the systematic approach to the esti-

mation, measurement, and control of software costs on a project. This

discipline provides the vital link between the concepts of economic

analysis and the methodology of software engineering. The tasks involved

in software cost engineering are complex, and individuals with the know-

ledge and skill required are scarce (I). The accuracy and consistency

of the SCE results are often questionable (2). There is a definite need

for tools to enable SCE by managers and planners who are not experts and

to improve the results (3).

PROBLEM DESCRIPTION

Software costing is required for the Space Station Data Management System,

as in other projects, in many situations. Often the costing is needed

within a limited time frame for a proposal, to build a business case, or

to evaluate a project that is in trouble or potentially may have a problem

meeting cost and schedule constraints if not adjusted. Quantitative es-

T. Henson
IBM
1 of 19

timates are required; however, little solid information may be available.

A detailed analysis of the software requirements may take weeks if not

months. Also, there may be a geniuine concern about how well the software

requirements are defined and how stable are those requirements.

To further complicate the situation the estimstion process itself carries

some inherent risks. Some of the factors that increase risk are software

size, complexity and criticality.

Software size, particularly in a system such as the Space Station DMS,

is an important factor that can ultimately affect the accuracy of the cost

estimate. As the project size increases the interdependency among various

elements of the software increases. Problem decomposition, an important

step in the costing process, becomes more difficult.

Complexity, i.e., the relative difficulty of the software application,

is an important factor affecting development costs. Some types of soft-

ware are inherently more difficult to develop than others, e.g., devel-

opment of an operating system compared to the development of utility

software. The type of software function, such as real-time, input/output,

batch, or computational, and the level of difficulty of the requirements

also significantly influence software complexity.

The criticality of the software directly affects the cost of validation

and verification as well as indirect costs. Software for certain medical

diagnosis or treatment systems, for air traffic control, or for the Space

Shuttle Flight Control System must not fail or human lifes will be lost.

In contrast, an inventory control system should not fail, but the impact

of the failure would not result in the loss of human life.

Viable software costing depends on a quantitative historical database.

If no historical data exists, the cost estimation rests on a very shaky

foundation. For Space Station DMS, as for other IBM SID Houston projects,

the cost engineering database is based on more than 15 years of develop-

ment of NASA Space Shuttle software, ranging from low criticality, low

complexity support tools to highly complex and highly critical onboard

software (4), (5).

KNOWLEDGE-BASED SCE AUTOMATION -- SCEAT DEVELOPMENT

Currently at IBM SID in Houston, software cost engineering tasks are

performed by a domain expert using his/her experience and data compiled

from previous efforts. For a software costing exercise, the domain expert

may use stored data and algorithmic/model-based, costing programs; but a

significant part of the process is based on non-automated expertise.

Software costing expertise is needed in many situations, and the costing

is often needed within a limited time frame. Yet, individuals with the

knowledge and skill to conduct a software costing exercise are scarce.

The knowledge-based decision support assistants in SCEAT identify and

preserve the domain experts' knowledge, assist managers and planners who

are not costing experts, and improve the accuracy and consistency of the

cost estimation results.

T. Henson

IBM

2 of 19

As part of the knowledge acquisition process, the first draft of a soft-

ware cost engineering workbook has been written and utilized as high-level

requirements for SCEAT. The overall SCE process was analyzed from a

modular/structural/dependencies viewpoint. Included is the relationship

of SCE methodologies to other parts of software/systems engineering

process control, at one end of the spectrum, and the decomposition of SCE

into component tasks and the identification of the SCE foundation or

central core, at the other end of the spectrum (See Figures 1 and 2).

Then a concise approach to software cost estimation, which covers the

total costs -- direct and indirect -- over the complete life cycle, using

existing methodologies and tools and quantification of the primary domain

expert's knowledge (6), (7) was defined. The experience-based tasks in

the SCE process were identified, and the functional design of SCEAT in-

cludes expert systems to assist in those tasks. The core development cost

estimation methodology was defined in the SCE workbook in more detail and

implemented in the initial SCEAT prototype, which includes prototypes of

expert systems for assistance in determining software criticality and

software complexity.

The SCEAT prototype integrates, under Professional Work Manager (PWM) and

EZ-VU on a PC, algorithmic SCE tools with expert systems for decision

support assistance. SCEAT integrates the decision support assistant ex-

pert systems for software criticality and complexity determination and

"stubs" for four additional planned expert systems with nine algorithmic

tools including the Matrix Method tool implemented in Lotus 1-2-3. The

user interface is via panels offering cook book steps to proceed through

the SCE task, selectable information and tools, help screens, and pop-up

screens.

COSTING THE SPACE STATION DMS UTILIZING SCEAT

The SCEAT prototype has been utilized to assist in the costing of the

Space Station Data Management System (DMS), a complex software system

involving a distributed environment with multiple languages and applica-

tions (8), (9). The DMS for Space Station is also affected by the re-

quirements for long lifetime, permanent operations, remote integration,

and phased technology insertion of productivity tools, applications, ex-

pert systems, etc. Major cost drivers include the large size and diver-

sity of the software, complexity, development support environment,

off-the-shelf and reusable software, and criticality, which varies from

one module to another. An example of the type of results -- at the end

of the intermediate step of development cost estimation -- obtained with

SCEAT for the DMS costing is included in the presentation.

SUMMARY/CONCLUS IONS

The software cost engineering methodology employed by the domain experts

at IBM SID Houston has been captured and integrated into a prototype tool

SCEAT (Software Cost Engineering Automation Tool). This PC-based tool

integrates algorithmic tools with expert systems which serve as decision

support assistants.

T. Henson
IBM
3 of 19

SCEAT has been employed to assist in the costing of the Space Station DMS

(Data Management System). It is providing a standardized approach for

the DMS costing, which involves several individuals. It has made the

costing process more efficient and has relieved the demands on the prin-

cipal domain expert's time, allowing him to move forward into other areas

of software/systems engineering process control improvement. The auto-

mation and captured methodology domain knowledge has established the

foundation and mechanism enabling the continuing calibration and im-

provement in accuracy and consistency for Space Station DMS costing.

Plans for the future include developing additional knowledge-based deci-

sion support assistants and a tutorial to accompany the next version of

SCEAT. The approach is also being expanded to other areas of

software/systems engineering process control, starting with quality es-

timation, scheduling and management, and eventually extending to manage-

ment of_performance, product, resources, risk, planning, schedule. (See

Figure i). This is a continuation of the effort to accomplish the long

range objective which is to automate, including the development and

utilization of knowledge-based systems to serve as decision support as-

sistants, software and systems engineering process control. Results will

continue to be applied to assist in the costing and management of the

Space Station Data Management System (DMS).

REFERENCES

i. DeMarco, T., Controlling Software Projects, Yourdon, New York, 1982.

2. Kemerer, C. F., "An Empirical Validation of Software Cost Estimation

Models," COMMUNICATIONS of the ACM, Vol. 30, No. 5, May 1987, pp
416-429.

3. Boehm, B. W., "Improving Software Productivity," COMPUTER, Vol. 20,

No. 9, September 1987, pp 43-57.

4. Madden, W. A. and K. Y. Rone, "Design, Development, Integration:

Space Shuttle Primary Flight Software System," COMMUNICATIONS of the

ACM, Vol. 27, No. 9, September 1984, pp 914-925.

5. Spector, A. and D. Gifford, "The Space Shuttle Primary Computer Sys-

tem," COMMUNICATIONS of the ACM, Volo 27, No. 9, pp 874-901.

6. Rone, K. Y., "A Cost Engineering Overview," class notes and handouts,

March 29-30, 1988, IBM SID, Houston, Texas.

7. Rone, K. Y., "Software Engineering Process Control," copy of presen-

tation, IBM FSD, Houston, Texas, 59 pages.

8. Chevers, E., "Avionic Systems Test Beds for Space Station," Plenary

Presentation at the JAIPCC (Joint Applications in Instrumentation,

Process, and Computer Control), sponsored by the IEEE, ISA, and the

University of Houston Clear Lake (UH-CL), March 12, 1987, UH-CL,

Houston, Texas.

9. Heer, E. and H. Lum, "Raising the AIQ of the Space Station," Aerospace

America, January 1987, pp 16-17.

T. Henson
IBM
4 of 19

THE VIEWGRAPH MATERIALS

FOR THE

T. HENSON PRESENTATION FOLLOW

z
- w
n/ n/
w --]
oUF-
Z __)
-

Z_-
W _/]

(/3 __]

m n/
k-k-
c/] z
>-o
w) 0

w (/3

(]2 w
3 __b
_-- o
m F_
0 []_

_W

o_

--_ C_
ro rO

C_ rU

OJ
U

W
E E

0
4--

W rO
o__-

0
0_

E

4.-,

W

4-

0

0

g

0

0

°_

a3ueuaiu!ew /

o

!

/ Ou !I npeq3s
/

/
0

U OJ.--

. _ _

....J ILl

J

7

i,i

LL_

•;> '.-_.;L:,,_ QUAL!"I"Y

T. Henson
IBM
7 of 19

!

I

I-

tl_
IX.

"r"

piltliE_/o INTENTIONAI:LYBLANIfl

Z

OC
W
W
Z
(.9
Z
W

H
(B
0
O

W
IT
<t

LL
0
O3

ILl

L_

ta_ T. Henson
IBM
8 of 19

ttl
0
Z
.< I,LI

 .EmN
<{

0 <{
Z
E

_, =o.

Q.
0
"I-
U)

0

Z
i

I,LI
Z

Z

I-"
U.
0

--1

Z
Z

I"

T. Henson
IBM
9 of 19

O

IZI

C'--

E
133

O

&
(lJ

_fi2
t---

O'1
m

..1_9
fO

_IZ

T. Henson
IBM
!0 of 19

o
°_
-l-J

(o
E

u!
LU

A

Q.
0
"1-
(/)

n,
0

0
Z
m

u/
Z

Z

I/.I

I-
I.i.
0

_J

Z
Z

I-
to

o

¢a0

m

g
O
Z

tu

m

O

tu

U
uJ

¢_ .c i

_,_o _ oo _,_

I- -_ I_ I-

<C • @ , • , _ , , • , , • tL , , ,

_, _ _ T. HensonIBM
11 of 19

O
"v-

O

O
Z
m

Z

Z
W

W
t_

I-

O

_1
.¢

Z
Z

-I-

c_

tao

t_

ta0

ct

T. Henson
IBM
12 of 19

* * • * * *

a.

O
-r
tt_

0

Q
Z

Z

Z

0

_.1

Z
Z

I--

!
O
O

El

>,, Or) >

r- o 1:3 o

+ i .)

T. Hen_on

IBM
13 of 19

Q.

O
"1-

,,t

O

O
Z

iii
iii

Z

O
Z
iii

iii

I-
ii
O
(/)

..I
,<

Z
Z
<:

-r
I--

>.
0
0
J
0

0

F--
I.U

0
Z

(/)
0
(J

E
0

et---..-

4-J
cO
E

Ii i_.-

-L.)
0"1

III

4-)
0"1
0

U

-4-J
C
qJ

E
El.
O

[1J
>
GJ

r-1

[U

0
[._

T. Henson
IBM
14 of 19

r-

o-i
E
C3

,r-o
1)

L;
f-
D

LL

(/I r-

(lJ _I_A

IE_o
qj U
LhT-

o_ °_

:j u
c_(]J
Ill EL

El:U-}

(/1
.12
L)

E!

c-

(1,1
.I-)

if1 I0
{11
u) ---]

L._A
(]} L L. IIg

(.r) _- u 0
LD _. _ _J -IJ -U U
o nj _rr u u
_j _ aJ LL LL o
U:} _j I c:) _j

::n u .2 u_

I:]l 1_ (]J "-_ U LI

o b5 :a; -u° ._ L
r-u nj LJ U EL _ :> __

LL r2_ I:::: _ 4-) .LJ -L_
[]I I:::::]1UI El LI LI

• _ "...... OI (]} Ill
IJ {11 UI (11

LJ gl UI U) U) (]l tlJ I:]1
(_ LLI <1: _ <:I: Er] U] (J)

LIJ
I I I I I I I

L
0

LL

a.

0
"I-
(/)
'4

0

Z

Z

Z
kU

I,-

0

_1

Z
Z

I-

W

F-
_0

CO

Z

o

o

_, T. Henson
IBM
15 of 19

O
"1-

n_
0

u,l
7

7
ILl

e_

0
ffl
_J

7

cab
ILl

I-
Z
<

cat)
m

cab
cab
<
Z

o

0
or)

m

T. Henson ,_.
IBM
16 of 19

n
O
-r
_0

n-
O

Z

I1:

_u
Z

Z
ILl

,<

U.
0

_J
,<

Z
Z
,<

-r

ill

ttl
I-
m

<
I-
<
ttl

t.l_.l

l--
L)
Lt_!
t----

fv"

F--
CE
LI__I
__)
6,'3

Xo
_o._J
0_ -1- o
I--_- o
0E i.i}-

I----J

nlo
oF-

.J

"7 I-- 7
0 n_ _ I---_--
0--_0 I-- _ Ld
_0- _ulI--

LLI V) t4 bJ V)

!

N
!

F-
0
.J

..J

U

(I:

W

0__I
"I0
,'--40

T. Henson
IBM
17 of 19

O
"I-

0

Z

i11

Z
i

0
Z

u,I

0

_J
<

Z
Z

O9
!-"
--i

¢/)
Ill

!11
!--
,¢
m

Q
ttl

e¢
ttl
i-
Z
m

IL
0
ttl
ec
>-.
!-"
IL
0
Ill
.J
I1.

,¢
X
ill T. Henson

IBM
18 of 19

I----

t'r"

f'l

--"1

-J

I'-'-

F'--

i

1"3 C'4 I_"71 "--4 C"4 C'M I'-'_

I---

L-1

LLI
CO:

LU

• • • • • m ! • Q

",:I" --..-4 -.,--I ,-13 el" _ 0 _

c4 r_ -_ c; r-; _d c; r-; -:

LU , r_ r" o =,_o.--..-.o

I L-. I'9 t',l C_I t'_4 ('-q
LtJ I

5:--

U

_I

_.J

Q

Z

<I" _ _]_ _3_ <;t2 <_ _ -...I: ._J

0 0 0

0 0 0
0 0

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

b'3 C'4 I"0 _ b'_l 0

L_

ijn
kn 111

111 u

l.j, rlJ

IU U_I U

• D"-

"E_ E: Cr:l E:

(JO E: O LrJ I_ r_
E3 i_ LI or} E _ _ u

O I--- 4J 0J _ _ E m _U

Ell

(1

U}

C_

U_

b-3

u_

c_J
0--

<._..

Er--

.[-_.

t _

h ".,

..-../

-T.S
I---"

I. -

OF POOR QUALITY

Q.
0
-r-
(n
'4

0

Z

u,l
Z

7

I--
u.
0

.J

Z

-r
p-

41,, 4k T. Henson
IBM
19 of 19

e,l
O

0

Q
Z

w
Z

Q
Z
ii1

I-,-

0
if)

-1

Z
Z

I-,-

N91-10612
./t '

ao November 1988

Software Sizing. Cost Estimation and Scheduling

William G. Cheadle
Martin Marietta Astronautics Group

Mail Number L0330
Post Office Box 179

Denver, Colorado 80201

INTRODUCTION

The Technology Implementation and Support Section at Martin Marietta

Astronautics Group Denver is tasked with software development analysis,

data collection, software productivity improvement and developing and

applying various computerized software tools and models. The

computerized tools are parametric models that reflect actuals taken from

our large data base of completed software development projects. Martin

Marietta's data base consists of over 300 completed projects and hundreds

of cost estimating relationships (CERs) that are used in sizing, costing,

scheduling and productivity improvement equations, studies, models and

computerized tools.

BACKGROUND

J

Martin Marietta resolved in 1975 to establish a study effort to investigate

the software development process and the understanding of how to plan,

schedule, size, and estimate software. The outcome of this analysis was

that management decided to develop a company-peculiar parametric

software estimating cost, schedule, and manloading model. This

parametric model was generated by using actual software development

data collected over a number of years. Cost estimating relationships

(CERs) were created, project and mix complexity factors were established,

and independent variables were quantified. The result was data

base-derived software estimating equations for assembly and high-order

language software. These equations and our resulting software parametric

models have been validated by comparing project sizing, labor actuals, and

schedules with PCEM outputs and documenting the results.

W. Cheadle
Martin Marietta
I of 29

DEVELOPMENT APPROACH

During the early years of our data collection, analysis and model

requirements generation activities it was decided that Martin Marietta's

software parametric models would include the whole software

development life cycle from systems requirements through systems test

and provide budget and schedule outputs for the four software development

organizations that contribute most to software development. These are:

Systems Engineering,

Software Engineering,

Test Engineering, and

Quality.

Our data base collection approach consists of breaking software actuals

out by class, type and language.

Classes of software include:

Manned flight

Unmanned flight
Avionics

Shipboard/Submarine
Ground

Commercial

Types of software are:

Systems Software: Operating systems and executives.

Support Software: Simulation, emulation, math models and

diagnostic software

Applications Software: Software that solves the customer's problems.

W. Cheadle
Martin Marietta
2 of 29

We collected sizing data by programming language. Our software sizing

data base library consists of over 5 million Martin Marietta (Denver)

developed source lines of code and over 4 million source lines of code

developed by other software development companies and organizations.

At Martin Marietta Denver, we are presently gathering detailed sizing

information at the function level to provide additional inputs into our

computerized sizing model.

An example of this detailed data is a program of 13,830 SLOC (less

comments), of which 9,678 (70%) was programmed in FORTRAN IV and

4,152 SLOC was programmed in assembly language. There were also 1,434

data statements. The sizing summary by computer program component

(CPC) consists of the following:

Total

Function Name _ HOL SLOC

Data

State-

ments

a) Executive/Ooeratina System

System Control

Interrupt Handling

Interprocessor communcations
Initialization

102 275 377 5

655 64 719 1

75 139 214 0

13 35 48 1

b) O oerator Interface

Menu display and automatic generation

Operator prompting and error checking

Tabular displays

Graphic displays
CRT Formatter

0 1,003 1,003

0 899 899

0 485 485

0 34 34

0 22 22

8

4

51

0

0

W. Cheadle
Martin Marietta
3 of 29

c) Data Base Mani0ulation

Data base generation/regeneration

File management

Data storage and retrieval

d) Diagnostics. Fault Determination

Sensor diagnostics

Memory diagnostics

CPU diagnostics

e) Hardware Interface

Peripherals
Sensor Device

Format manipulation and information
conversion

0 232 323 0

203 94 297 1,116

0 248 248 9

104 3,312 3,416

396 1,61 0 2,006

2,510 381 2,891

144

60

20

54 0 54 0

40 595 635 15

0 159 159 0

4,152 9,678 13,830

The "interrupt handling" CPC function level breakout reflected these sizing

numbers:

1,434

Data

Total State-

Function Name _ HOL _ ments

Real time interrupt handler (I)

Enable/Disable subroutine

Real time interrupt handler (11)

Keyboard interrupt handler

Keyboard handler subroutine

Put character

Disable interrupts routine

Enable interrupts routine

52 52

5 5

10 10

53 53

0 50 50

0 14 14

8 8

10 10

W. Cheadle
Martin Marietta
4 of 29

MS Interrupt handler

MSS Interrupt handler

Real time interrupt handler

STAR PIP interrupt handler

ATOD data ready interrupt handler

Deuce/STAR threshold data ready

interrupt handler

79 79

63 63

81 81

67 67

51 51

80 80

655 64 719

The above detailed sizing data along with the cost and schedule information

by project provides the input for our detailed analysis and productivity

improvement activities.

PARAMETRIC MODELS

The six models described in this paper are all PC-hosted models and trained

users carry disks from job site to job site using available compatible PC

computers located at the project facilities. These models provide a

management capability that has not been available in the past, and there

are no subscription costs or mainframe computer delays using these
models.

1) Software Parametric Cost Estimating Model (PCEM)

This model provides a method for estimating the total budget, schedule

and manloading for a software development activity. The model addresses

all phases of software development from systems requirements through

systems test. There are two versions of the PCEM model. Version 3.1

reflects MIL-STD-490/483/1679/1521A development. Version 4.0 reflects

DOD-STD-2167 and Ada software development.

W. Cheadle
Martin Marietta
5 of 29

Description of the Parametric Model

The data based utilized in the Software Parametric Cost Estimating

Model (PCEM) consists of "in-house" and "outside" historical software

development actuals collected from over 300 completed software

development projects.

The data based software projects were separated by "class" and "type"

of software. Each class and type has a different complexity and different

cost estimating relationships (CERs).

Class of Software

1) Manned space 4) Shipboard and submarine

2) Unmanned space 5) Ground

3) Avionics 6) Commercial

Type of Software

1)
2)
3)

Systems Software

Applications Software

Support Software

Independent Variables

Several independent variables were investigated and the four which

were selected and incorporated into the model are summarized below:

o Lines of Code - The PCEM accepts either source lines of code or

machine instructions (object instructions). The amount of functional

decomposition performed prior to arriving at a sizing estimate is very

important. A great deal of time and analysis is put into reviewing the

decomposition so that a good determination of sizing accuracy can be

resolved before we input sizing numbers into the PCEM.

W. Cheadle
Martin Marietta
6 of 29

, Project Complexity - Project complexity consists of 14 factors which

reflect how well the customer problem is understood and how prepared

the contractor is to respond to solving his problem. The factors are

weighted and all 14 must be addressed.

1)
2)
3)
4)
5)
6)
7)

Requirements Definition

Documentation Requirements

Experience of Personnel

Experience with Equipment/System

Amount of Travel Required

Language Complexity
Interfaces

8) Man Interaction

9) Development Environment

10) Timing and Criticality

11) New or Existing Software

12) Reliability of Test Hardware

13) Testability of Software

14) Operational Hardware
Constraints

o Mi_; Complexity_ - The software mix complexity is applied after

software sizing has been accomplished. A hundred percent of the

identified software lines of code are distributed across the eight mix

elements.

The eight elements of mix complexity describe fractions of the total

number of source or object instructions, identified by the software

engineer.

1)

2)

3)

4)

Mathematics

String Manipulation

Diagnostics, Support Software

Data Storage and Retrieval

5)
6)
7)
8)

On-line Communcations

Realtime Command and Control

Man-machine Interaction

Systems software

4. Schedule - PCEM determines the optimum schedule and establishes

dates for software milestones. The optimum schedule is defined as

that period of time when the software can be developed for the least
amount of dollars. Costs will increase if the schedule is accelerated,

or if it is stretched out beyond the optimum schedule.

With the four independent variables defined along with class and type

information, the PCEM can arrive at a total software cost and schedule

estimate.

W. Cheadle
Martin Marietta
7 of 29

Organizations Included in the PCEM Output;

The PCEM cost equations provide estimates of budget and schedule for

the following three software development organizations:

1)

2)

3)

Systems Engineering

Software Engineering

Software Test Engineering

With the information on source or object lines of code, project

complexity, mix complexity and user-supplied schedule, the PCEM

computerized model can now arrive at the number of manmonths and the

schedule required for each of the three software development
organizations.

The equations used in the computerized model are arrived at by a

multiple regression methodology assessing and analyzing the collected data
base information.

Assembly Language and High Order Language CERs

Development Costs

Equation: Y =

Where Y --

X1 =

X2 =

X3 =

X4 =

a =

a (x 1 bl)-(x 2 b2) • (x3 b3). (x4 b4)

Total Number of Manhours (165 hours = 1 M/M)

Estimated Number of Source Lines Code

Estimated Project Complexity

Estimated Mix Complexity

Schedule

Constant

b 1, b 2, b3, b4 = exponents

W. Cheadle
Martin Marietta
8 of 29

Budget and Schedule Information is provided by PCEM for both

MIL-STD-490/483/1679/1521A and for DOD-STD-2167 Developments:

Version 3.1 (MIL-STD-490/483/1679/1521A)

SPi_ SP, R SOR POR COR TRR TRR AR

REQUtREMENTS I)E_GN CCOE TEST

Version 4.0 (DOD-STD-2167)

SPR SRR SOR SS.q POR COF_ TRR TRR FC_

REOUIREMENTS DESIGN OCOE TEST

Systems Sys Soflware Prel Oelall Code Unit CSC CSCI System

SIW Reqls Oe s_gr Oes;gn Test Inlormal Formal Integration

Reqls Anal Te$1 Tesl Test

Anal

The computerized PCEM model provides a labor estimate in manmonths,

broken out by the phases and subphases of software development. The

model identifies an optimum schedule and provides manloading information

for each calendar month required for software development. The manmonth

estimates are divided between the three organizations that have software

development responsibility.

Example Version 3.1"

1 2 3 4 $ _ 7 6 9 10 It 12

SPR SRR $I_ PI)R CCR

..Oes_n 3 0

TRR TRR AR

2.5

C:ko,_ 25

I
Un;l 2.L:'3

I I
2' 25 FOT

Sys Engr 3.0 3.0 3.0 t.S t.0 .$.S .S .S .S .S .S iS.0 MIM

S,'W Engr 2.5 3.S 4.S 7.0 O.S I0.0 9.5 8.0 6.S 4.S 3.0 _.S 70.0 MIM

Tesl Er, gr .S .S .S .S .S .S ! .0 I.S 2.0 3.0 3.S 3.0 t7.0 M,'M

To131 6 2 8 9 I0 I t 1 1 tO 9 8 7 G 102.0 MIM

W. Cheadle
Martin Marietta
9 of 29

2. Maintenance Model

The computerized "In Scope" maintenance model was recently

validated, and became a Parametric Cost Estimating Model (PCEM) output

during the first quarter of 1988. The parametric maintenance model is an

historical data based derived tool designed to assist users in estimating

the cost of "In Scope" maintenance efforts over a few calendar months or

over several years. The software maintenance model output includes those

efforts related to maintaining the baseline software configuration through

error correction and fine tuning activities.

3. Performance Measurement Mo_lel

This state-of-the-art software development performance

measurement tool was developed during 1988, and permits independent

assessment of on-going software development project performance. The

user establishes a performance structure which consists of a list of

documentation, design reviews, and milestones that the model is going to

use to track software development performance. The model provides a

measurement of the performance level based on actuals with respect to

budget and schedule and estimates a set of "to complete" budget numbers

and calendar months for the identified project. During the course of the

development the model identifies where the project is performing at either

above or below a 100 percent capability.

4. Sizing Model

The software sizing model is a standalone model which is presently

undergoing verification and validation testing, but in the very near future it

will become a parametric cost estimating model (PCEM) output. The sizing

model provides software development engineers with a new concept

computerized functionality software sizing capability. The model gives the

user a tool to create software development functional decompositions.

Once the decomposition is established, the model helps the user create

lower level functional decompositions based on whether the software

functional element represents a processing task, an input task, or an output

task. Software functionality menus containing generic lists allow the user

to indicate functional elements that are components of the software

W. Cheadle
Martin Marietta
10 of 29

systems to be developed. As the user identifies software elements,

FORTRAN source lines of code estimates are provided by the sizing model.

The model also includes an estimating algorithm for data statements

sizing.

5. Risk Analysis Simulation Tool (RAST)

RAST is an interactive computer-based application model that

provides a technique for performing quantitative software risk assessment.

A major feature of the RAST model is the ability to apply statistics to

assess cost risk of proposals and on-going projects. The RAST provides the

capability to add, subtract, multiply, and divide Monte Carlo derived
distributions and constants.

6. _;oftware Architecture Sizing and Estimating Tool (SASET!

This is a new computerized software cost estimating, scheduling and

functional sizing model developed for the naval Center for Cost Analysis in

Washington, D.C. The SASET model is a forward-chainging rule-based

expert system utilizing a hierarchically structured knowledge data base to

provide sizing values, optimal development schedules and various

associated manloading outputs depending on complexity and other factors.

the model is divided in four separate tiers: Tier I, Project Emulation; Tier

II, Sizing; Tier III, Complexity; and Tier IV, Maintenance. The model has

recently gone through verification and validation testing and the Air Force,

along with the Navy, has just recently (September 1988) provided
additional dollars to add a calibration enhancement.

ADA

Martin Marietta Denver has been actively involved with the Ada

language since its inception. We particpated in the public evaluation of the

Red, Blue, Yellow and Green languages before the Green language was

selected as Ada in 1979. Over 200 employees have attended our in-house

software engineering Ada training course, and over 200,000 SLOC in Aria

have been generated by Martin Marietta students and by engineers on

projects using the Ada language. In 1981 Martin purchased the NYU Ada/Ed

interpreter for the VAX computer and the demand for a higher performance

W. Cheadle
Martin Marietta
11 of 29

implementation led to the purchase of a Telesoft/Ada compiler for the

VAX/VMS in 1983. Martin Marietta also purchased a validated Rolm Ada

Compiler and a Data General Eclipse MV 8000 II computer in 1983. C31

software developed for a large system started in July 1984 and required

rehosting Ada software from the Data General onto a VAX 11/780 computer.

During 1987 and 1988 Martin Marietta Denver has won three large command

and control projects requiring the use of Ada as the software development

language.

CONCLUSIONS

Martin Marietta has one of the largest software development data bases in

the country and has been involved in software development data collection,

analysis and model building since 1975. Our analysis experts have

conducted costing, sizing, scheduling and development management studies

on the Ada language for the past several years and have provided new

parametric models for Ada management costing and scheduling. Our models

and techniques are project tested and geared to providing top management

with the tools and resources needed for accurately sizing, costing and

scheduling Ada projects and for doing performance measurement on these

same projects as they move through the software development process.

W. Cheadle
Martin Marietta
12 of 29

THE VIEWGRAPH MATERIALS

FOR THE

W. CHEADLE PRESENTATION FOLLOW

Co

:2:
N

,.J

:::3

C:2
[,J

-'1-"

(.3
¢/)

Z
¢11

¢JD

Z
i

N
n

OlD
Z
m

I==

I
i

I==
C/}
M4

Oh

I-=
Z
!,84

3"
14d

Z

1,4J

3
p"
LL

¢3

0.
::3
0
IX:
C_

Or)
(3

Z o
0

• o 0

3 =
wma:: 0

m

m

a
w

uJ

nil
Ix:
n

OR!_2.iN'Ak PAGE IS

OF PC;C._RQ_G;_,,'..ITY

W. Cheadle
Martin Marietta
15 of 29

[,._.,..,..,_ _ F,,.,._:..:.,;,.,_.,,, _,j_ FILMED O_]E.. 1_ INTENTIONALLYBLANK

_J
m
a
O
2;
¢O
I

IZ
I--
ul
2;
<
IZ

IX.

W, Cheadle
Martin Marietta
16 of 29

03
_.J
L.I.J

O

tO
I

U.J

rv'

13..

>.

La.I

kl.I
O_
<
e_

co

:¢

I--
LLJ
m

rv'

y-.

Z

n,,

y-.

Z
O
i

09
r¢
W
>.

IK
111

IX.

,.-I
LLI

O
IK

Z
u

I--

M

i--
09
llJ

!--
09
O
1.3

t.J
i

ev,
I--

y-

¢g
.<
13,.

,¢:
Z
O
i

09
e,¢
tlJ
>.

IK
iJJ
(.,3

...4
ILl

0

cO
Z
i

I==
.<

m

I--
09
I.I=I

I--.
09
0
tJ

U

I-.-

.<

.<
I:I.

,--I
14.1
C_
0

I=I=I
U
Z
.<
z
I.t.I
I--
Z

.<

--4
LI.I

O
IZ

I---
Z
111
IZ
UJ
nr

09
.<
ILl

IZ

¢.J
Z

n_
o
U.
np
L;J
O.

.-J

O
IZ

_D
Z
m

N
i

09

.-I
14.1
c_
O
IZ

Z
O
i

l..-

np

14.1

Z
i

m

t.J
O.
t.J

I

tj
Or)
t_J

I--
09

nt

..J
O
O
I--

Z
O
i

.--I

IZ
i

09

09
i

09
>-
._l

Z

v
00
I

r_

i

..J
O
O

LO
Z
i

l.-
.<
IZ
i

l--
09
ILl

Z

.<

tD
Z

N
i

09

IJJ
o_

l--

IJJ
l---
i

tJ

.<
IJJ

.< .--.

!--09
u.._
O09

Q

Q_

O
rr
(.9
00
O
I

p-

<
Z
0
EE

CO

UJ
i

CC
<

Z
I

rv
<

uJ
O9
<
m

<

<
n

00

<
rv
(.9
O
rr
n
O
O
e0

rr
LU
>
O
v

LU
CO
<
m

<
t---
<
a

rr
LU
>
Z
UJ
a

<

UJ
I

E
<

Z
i

t-
rr
<

co

o_
CI_Q

CJCM

E
0
0

c-

0

E_

c-
E_

U_

UJ _

cc
< o
:; 00

Z o

(_

I

I.i

O
O.
O.
:3

(E
r-
O

°I

O
°--

O_
Q.
c_

(E
E

(/)

CO

C3

O
0r;

O

co

O_

J_
E
(D
cO

c_

c_
"13
<
v

_J

O
"1-

O

c_
:3
13)
E
c_

_J

d
O

r- --J

E _-
O_ (D

i... O

o _-
I.- _ _ II

n r- _ o

o

(c o E
O --- r_

0 0o (- O_
(- (-

-- 0 0
__ c- 0
0 _ E (1) o
cO _ -- >

(1) 0
to

(-- C C

E E _ o _.E
0 0 -- r-
-- -- E _ 0

(D 0 _ (D 0
C3 C_ 0 m co

W. Cheadle
Martin Marietta
17 of 29

n

O
rr
(.5
09
O
I

<
Z
O
13C
l--
O0

<

I

CC
<

Z
F--
rr
<

LU
09
<
m
<

<
a

UJ

8
rr
I:L

I--
Z
I.U

q
Ul

UJ
121

U.I
rr

0
C_

LLI
I

Z
<
n

O
(b
rr
LU
ZE
t---
O

E

ID}
O

Q.

(D

T"

II

(/} (/)

O (3

O O

Q. Q.

c--

CL
E
O

(b

(D
f--

Q

E:
:3
O

13)

O
.Q
Q.

°I

r-
Or)

I...

O
CO

O

(/)

(b

O
Q.
13.
:3
(/)

t-
O

°I

O

Q.
O_

_E
E

(/)

O

O

(¢)

Q.
>,

.Q
E
(D

"13
<
v

/
O
"1-

(D
13)

o)
E

/

13)
o

ZL

.E
o

o

(1)

:3
-13
(D

.z:
o

(.-

E
Q.
O

(D
>
(D

a

1:3
O
L_

n

.E
_j

o

(#)
.E

o
E
r-

E:

E

O
(D
>

D

(D
E
_L
O

(D
>
(D
Q

(D

O
U)

"13
_)

"13
:3

O
r"

(#)
r"
O

o_

N
°I

E_

O

O
>,
o

°m

..J

E
(D
E
E)_
O

(D

O

E-
(D
_J
I,-.

(D
n

d
O
..J
0_

(30

O

(30

U

(3

O

Q_

CM

"O
O

O

O

(/)
(D
E

°_

/

(J

O
or)

W. Cheadle
Martin Marietta
18 of 29

!1

8

o 8

W

7 ,-

___.,,_

• e i. ,,o oo t. ,,_

W
We'_
_0

mO

t./)
.-r
I--

Z

0

er,

e'.,
Z
i11
--I

(,,)

I",-

,iP,

,!,-

(,.)

,,p,,

'1,'-

1',,-

i",r" o

I--

'I--

>-

g_

0
la.

I_

I-- II-- -

_n

_U

_ -_1
= I _zn,- • - =_

I
I-

0

¢0
I.,U

-r

0

ILl

0
0

,el.,

z

o

I
o

I-.
--0

._.__ rr

:'v,-

v- _ll . 'P"

T- v-

v-

• °

W. Cheadle
Martin Marietta
19 of 29

l-
Z
I11

Q.
C)
_1
LU

1:3

i-
LL
0
O0

CC

E O, --
o u. E_

ILl I.- w ILl u3 o _

-
_-. E.m
e" 0 L. 0

0
X
0
0

Q 0 Q
0 0
0 0

o

•o o

Z oe Z

tO uJ Ec 1:3
T- 0 --__

m go

"0 I:I:: if) m 0::

o 0 n

m
C

o

_D

_m

¢D ¢D

E _-

m

0 _ C

Em .'_

_0 0 r

E_
o

.-- 0
C

>. 0
_nC)

W. Cheadle
Martin Marietta
20 of 29

cJ

c_
o

u

Z

0
,.-1
.
:>

0

Z

jz_

z

o

o

!

¢.o
I

o
¢m

z
o
i-4

z

z
0

u 1-,
1-4

IIl I.-4

d

>. f-_

LX

Z

r_

\
\
\

z
o

z
1.4

Z
I,--_r._ o
Z u'_ I--I

I'-4

O'

N

,--I

L::

C_
H
E-"

-, '_ 0

_-" 0 _. 0
._. U 0 ,:J

0 C) ,-.._ 0

.,_ o o o

O_

Z<
0

mz

m_Z
_Z 0

_0<

H

o_

mm_m
0

OR_C!,_A!. _AGE IS
OF F"O_...,_-.

W. Cheadle
Martin Marietta
21 of 29

I--

13_
13.

ILl

_3 to

¢aq

I--

13_
O.

;4
W

<

I.lkl

T

O

M

m

q •

w

u.I

w'il

W. Cheadle

Martin Marietta
22 of 29

I--
Z
W

r_
C:)
__l
LI..I
>
t.l_!
¢::::1

I.IA

LI_
CD
¢..,O

I----
Z
L.X.I

0

IJA
>
InA

0
_D

I--'-

LLJ
-v"

Ek_
O0

I--*
O

ILl U_
I---

O q_
U

U

Z

,--.,
O0 ,--I
ILl

I---
Z
LL.I
,e.._=

LJ_I _'_
c,.'* O0

D

I..LI
r'v'*

Z
0

I----
<
I---
Z
U_I

D

U_ O

LJ
Z

LL
I,I

,i;

LLI

"-r-
U

C_

U..J

I"--

!---

0

<

ILl
Z

<
X

.U

_U

<

c_

c_

LLJ
Z O
O q_4

Iv-"

Z
QD

r_ LU

GO _---
L_

GO

L_

O0

@-==4

<

oO
r_

<
V

o_

L_J
Lr_ E--
U_ O_

>-
GO

ILl
N

W
k--
D
r_
=El
O
L_)

Z
<

cr_
_.A
o
o

- i----

....1

ta_J

t.i._
0

(./'?

I----

LLJ
Z Cr_
O_-'_
Q_)

z

o') C',J
i,i

i----
z
LI.I0
'- IV

ozZ

l_l_J

--'I-

W. Cheadle
Martin Marietta
23 of 29

c

W
C_ o

8 °e--

LI_ x:

W _
0

_z E
__1

W _
if)

rr _

0
o
c

rr" _
W 4...
n _-0

rr w

© -
7"

W. Cheadle
Martin Marietta
24 of 29

,,-2

'L_

O

v

O

O

c

c

ID
K,.

ID..

O

O
O

O

c
o--

O

O
co

c-
O

W

c

E
O.
O

>

O
cO

¢0
c
O

O

O.
CL

"O
c

O

_9

E u)
o

!

o
u_

>,
con"

f-

c
o
E

c

E

Q_

u)

c
°_

o
u_
T"

tO Ca')
Cq
CO O
O c-

tO
_O
T'-

_D
O
O

T'--

T"

Cq _--

T-"

o

c

W . _.

EWW
u)

u) co
>,
c000_

]o

o
to
T'--

C)
O
_J
CO

Q_

o

_t
c_
cq

.5
tl.l

d-

J

_b o

0 _ _ _ I._

N >- _

W, Cheadle
Martin Marietta
25 of 29

I---
z
i,i

0
_._1
1.1_1

I.x.I

ill

I---
It_
(2)
¢.,o

ILl

Id-
0

I,I
z

.._I

i,i
(...)

0

z

oo
ILl
I---

I--
I,--,,I

l--
co

0
(__

I.---

"T"

UJ

W
:c

IJJ

Z
-7
C_ UJ

C_
>- 7-

ILl _--

0 W

X
LL UJ
0

:7 I_.J_

U ,._1
¢'_ Lul

C_

LI.J

u .._1
._1 0

u

i,e.__

ILl Lt_l

Z

oO
Z
0

0 oo
._1

IJ.I I.J_l ._1
oo I-- '_:

oo _-I LI.I

_ W --I
--J _-- N--
(-_ Z _-) (__
X LJJ _ Z

07-I--

_C:
I_ I I I

I---
0
Z

W. Cheadle
Martin Marietta
26 of 29

.\

4.'

(J

(,1 _ (_1 :z- I.--

I-- u.l _ i..- Z _ I_¢Z@@o
_ _ tA.. @_ Z "" _-_ "_ ._

Z,,i 4. I._1 I" I.U .J Y"

_ 0 0 U 4 J I-- I _ r

...1 t..._ _ ._ ,..._ @@ .,_D- .., CJC_

_ 0 0 _ i'-,-.-- 0

.:; u_ ::E. _ E uJ .. ,r- ;E Z
uJ 4. _,- 01 El -- u'_ u'_ uJ i--- "- "" "-

ujo'l uJ I--- I-- tn i... 4. Eo _3 _:::_

f:E _r.. =r- ::E
I-- _ _!.. i_ i_ _r {n --

m ; zzz uso=Q_%

E4. ._1 ..J _
UJ Z .E). LO 0 O O L_.__ _..e_ O C)
_ U.I _--_ U.I .J ---I --'1 .-_ _.._Z _' .. ,_

/-" "" U.I

L.) i._! "_" U.i U.l U-I U.I '-" -"

o- _l-i- W. Cheadie
Martin Marietta
23 of 29

Z
m

..3

e_
I.U

O

7'

f,D

Z
m

O

Z
m

N
M

e_

b-._a

U.II

(-_1
i.Ul

I.u .,_

Xl

N

1_ u._ .__I ¢_

__.__.__ ,, .,,.,:

; !--- ¢n

I--Z

12 w

Z

z_

"' I---

W. Cheadle
Martin Marietta
28 of 29

Z
m

._J

t.t.I

Z
a=

Z
m

O

Z
m

N
m

In
lad

tn

I'-"
I-'-

i11
tD

Z

.-,I

LLI
....I

O

lad
I'--

Z

O
113

O'1

LU
-J

e'_
O

I"
Z
UJ

0.

Z
ILl
lad
3:
I--
i11
er't

v
Z

_J

I"

Z
O

I---
(/)

tZ

0 0 0 0 0

._i
uJ

,,.J

11.

Z

Z

e_

_J
_n

0
h"

Z
uJ

i,I

3:
0
_J

d4

v

0

¢v
o

n,,

Z

I--

I.LI
I'-
W

O
I--

3:

O

3:

iv
_J

I--

_J

O

i-ra
.J

z Z

._1 _J
o _
I--

o

_.1

.,_z

0

W. Cheadle
Martin Marietta
29 of 29

PANEL #3

STUDY OF SOFTWARE PRODUCTS

H. Sayani, Advanced System Technology Corporation

J. Hihn, Jet Propulsion Laboratory

R. LaBaugh, Martin Marietta

ilili iili! ii iiiiASTEC ii iiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iii!iiiii!ii!iiiiiiii iiiiiiiilil iiiiii iiiiiiii iiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii ii !iii ii ii!

REVERSE ENGINEERING

AN AID TO UNDERSTANDING SYSTEMS

Presented

At

The Thirteenth Annual Software Engineering Workshop

NASA

Greenbelt, MD

November 30, 1988

By:

Hasan H. Sayani, Ph.D.

Advanced Systems Technology Corporation (ASTEC)

9111 Edmonston Road - Suite 404

Greenbelt, Maryland 20770

(301) 441-9036

Copyright © 1988 by Advanced Systems Technology Corporation (ASTEC)
Greenbelt, Maryland

All rights reserved. No part of this material may be reproduced in any form
or by any means, without permission in writing from ASTEC.

© 1988 by ASTEC
H. Sayani
ASTEC
1 of 24

Reverse Engineering

An Aid in Understanding Systems

by

Hasan H. Sayani, Ph.D.

Advanced Systems Technology Corp.
9111Edmonston Road, Suite 404

Greenbelt, MD. 20770

1.0 THE NEED FOR REVERSE ENGINEERING

Several reasons may bring an organization to consider reverse engineering.

It is possible that an organization's software (code) has not been

adequately documented, either from its inception or after multiple rushed

changes. To understand the system behavior, or to maintain the system, the

organization would need a more global view than that provided by a program.
On the other hand, an organization might find that it would like to

consider, before actual redesign, the impact of proposed changes to an

existing system. Or, an organization might need to grasp how two or more

existing systems could be integrated. One other reason might be to update

the underlying technology of hardware, operating system or system software

(such as change from a file management system to a database management

system).

H. Sayani
ASTEC
2 of 24

2.0 WHAT IS REVERSE ENGINEERING AND HOW IS IT APPLIED?

The process of Reverse Engineering entails translating existing code into
some "higher" form. Reverse engineering can be applied for one of several

applications.

2.1 Making Code Easier To Read

When programs have evolved over time, and written by various
individuals with differing degrees of sophistication, the resultant

program code becomes difficult to read. In such cases, Reverse

Engineering may help in re-structuring the code (often referred to as

"re-engineering") to make it easier to comprehend.

2.2 Synthesizing Diverse Existing Systems

Previously stand-alone systems may need to be synthesized into a

coherent single system. In such cases, the individual systems may have
been written in different programming languages, or use different

technology to manage data. Reverse Engineering would help in producing

a synthesized abstraction which could be properly evaluated for

procedural, control and data structure consistency and a new system

re-generated from such abstractions.

2.3 Maintaining An Existing System

Making changes to an existing system requires that the maintainer
understand the effect of making the changes. In particular, it is

important to recognize not only the first order effects but also the

ripple effects. The Reverse Engineering mechanism can be used both to

estimate the impact of the change and to ensure that the change is made

correctly.

2.4 Redesign Of An Existing System

The development of a new system requires that it retain all the desired

features of the current system and incorporate the new features.

Further, the deployers need to be able to show the relationship of the

new system to the existing (old) system. This task is made much easier
if the basis for the new system is an abstraction of the current

system.

H. Sayani
ASTEC
3 of 24

3.0 COMPONENTS OF A REVERSE ENGINEERING TOOL SET

A Reverse Engineering System is made up of several components as shown in

the accompanying figure.

3.1 Generalizable Translator

The main component of the Reverse Engineering System is a generalizable

translator which has two main parts: one that recognizes known

constructs of the language, and another that can perform the

appropriate actions desired when a construct is recognized.

3.2 Abstraction Repository

The major action that the generalizable translator performs is the

production of abstractions suitable for storage and retrieval. Hence,

a required component of a Reverse Engineering System is an interface to

an appropriate repository. An example of such a repository is the

PSL/PSA system. A key characteristic of such a repository is the
availability of a formal underlying conceptual model that is not tied

to a specific programming language, and one that permits controlled
synthesis of abstractions.

3.2.1 Browsing Capability

The repository must have capabilities which allow the users

to browse/query the repository in a completely flexible
fashion.

3.2.2 Reporting Capability

The repository system must have a reporting mechanism that

permits the production of reports per specified format, or

"download" information that can be input to other tools such
as CASE tools.

3.3 Code Re-generation

Some applications may require that the code abstracted be re-generated

(if only minor changes have been made). A complete re-development of a

system from a higher level abstraction would fall into the category of

automated system development and is beyond the scope of the discussion
in this paper.

H. Sayani
ASTEC
4 of 24

•-_ Q,j
QJ u

i-.- r.S)

C

o/

f,._
_,.., 0

_Lq

CL

C u

'-_ 0

o

<

r'-
lip ":'-

,_ _ _>

L_

z
w

lu

IIIIIIIII

o

>

c7

C-.-,,

I,,.

H. Sayani
ASTEC
5 of 24

4.0 A REVERSE ENGINEERING METHODOLOGY

There are several steps involved in applying the Reverse Engineering
process.

4.1 Recognizing The Programming Language Dialect

Since no programming language conforms perfectly to a standard, reverse

engineering requires the practitioner to examine the code and identify

special coding constructs that deviate from the norm. This implies

access to a representative sample and a "pilot" application of the
process.

4.2 Accomodating The Identified Programming Language Dialect

The generalizable translator may have to be given additional rules for

handing both normal coding constructs and those that are special to
this code.

4.3 Translating The Code

The code is then passed through the generalized translator to produce
the abstraction that can be entered into the repository.

4.4 Examining the Abstraction

Reports are derived from this mechanism for examination and evaluation.

Formal documentation can be produced incorporating this information.

4.5 Using Ancilliary Tools

The information can

package) for viewing
pictures.

be passed to another tool (e.g., a CASE graphics
the structure and function of the code in

4.6 Integrating Systems

Information about (an)other system(s) can be merged with the

information about the reversed engineered system to determine impact of
integration.

4.7 Code Re-generation

Information about the target system could be handed off to a translator

for reinterpretation in the form of a programming language.

H. Sayani
ASTEC
6 of 24

5.0 SCENARIO OF USAGE

There are several strategies for using the Reverse Engineering Mechanism.

The one described below has evolved over several time and takes into account

the need to manage large amounts of information and to evaluate the target

system in detail as well as in its full scope. The whole process also tends

to be iterative.

5.1 Micro Examination

First, individual units of code (e.g. Programs, Copylibs) are
translated. Each of these translations are stored as an isolated

database in the abstraction mechanism. This permits the examination of

local structures: procedural as well as data structures. It also

affords an opportunity to examine the algorithm used at a "micro"

level.

5.2 Macro Examination by Features

After all the individual units of code have been examined, all those

units that comprise a system need to be synthesized. One obvious

approach is to take all the individual abstractions (individual

databases) and "merge" them together. Experience has shown that such a

database becomes far too large and unwieldy, both from the performance

standpoint and the human factors. An alternative strategy is to

synthesize subsets of individual databases. An example would be to

extract all procedural interactions between code units and populate a

"procedural structure" database. Another such synthesis would pull out
the data structures, and still another might make a detailed "data

element dictionary" database. Each of these could be examined and

annotated as necessary. This strategy does not preclude eventual

merging of these databases into a composite database.

5.3 Evaluating The Abstractions

Both the individual databases and specially synthesized databases can

be used in "browse" or "query" mode to pinpoint answers to questions

that precipitated the Reverse Engineering process. Answers may be

sought for questions about the boundaries of the system, the degree of

coupling, the implications of changing data structures, etc.

5.4 Applying The Results

The answers obtained above would make it feasible to take the necessary

actions to solve the problem. These actions could result in a strategy

of performing certain tasks such as determining the scope of the

ripples likely to occur during a particular maintenance task, or a
strategy for the addition of other design components using CASE tools

and requiring a re-design of the new system.

H. Sayani
ASTEC
7 of 24

6.0 USAGE OF REVERSE ENGINEERING ON ACTUAL PROJECTS

Reverse Engineering has been applied to various systems with differing
objectives.

6.1 Maintenance Application

A particular application, the maintenance of a complicated information

system, will be u_ed as an illustration of the potential payoff for the

application of Reverse Engineering.

This system was made up of several subsystems each with many major

functions and sub-functions. These sub-functions eventually were

broken down into primitive processes (as in Structured Analysis). To

understand the magnitude of the problem, one of the subsystems was made
up of 45 major functions which broke down into 329 sub-functions which

in turn resulted in 2,71] primitive processes. Similarly, one of the

components of the system had 36 data stores with 4,498 record types.

Several of these record types had over 180 data elements. Finally, to

illustrate the maintainers' nightmare, one of the Processes used 64

data elements and changed 61 of them. Similarly, one of the data

elements was used by 422 Processes and changed by 455 Processes!

This system was Reverse Engineered for the purpose of maintaining it.

Management kept statistics and a semi-controlled parallel group that

performed the maintenance task without the aid of Reverse Engineering
tools. Maintainers with the Reverse Engineering System reported an 8

to I improvement in productivity while noting that certain types of
maintenance assignments would not even have been attempted by them had

they not had access to the Reverse Engineering Mechanism. The casual

statistics from the control group (without the tools) showed that they

were still working on the problem four days after being assigned it

while the group with tools had fixed it in two hours. Further, the
group with the tools had far more confidence in the "fixes" made than

the group without the tools. Lastly, the group with the tools was able

to estimate the time needed to perform the fix with some degree of

confidence after studying the problem whereas the other groups

guestimates were off the mark, often by an order of magnitude.

6.2 Re-design Of Existing System

In another application, system developers were able to use the Reverse

Engineering Mechanism to quickly understand the "current physical"

system. They annotated portions of it with the help of current users,
and were able to move on rapidly to add new features desired. This was

done with the confidence that they had not left out any of the desired
features of the current system.

H. Sayani
ASTEC
8 of 24

Based on these and similar projects, we conclude that reverse engineering is

feasible and can be invaluable to organizations that:

have to maintain poorly documented code

want to redesign a system poorly understood

system

need to project the impact of desired changes

to a system

require the integration of multiple systems.

H. Sayani
ASTEC
9 of 24

7.0 POTENTIAL PITFALLS

We would not like to leave the impression that Reverse Engineering is a

simple, trivial solution to all problems of managing code. Properly managed

and with realistic expectations it can be a most useful approach. However,

there are several potential pitfalls that an organization may encounter.

They range from very mundane problems of low level technology to subtle

issues of organizational politics. We touch upon a few of these below.

7.1 The Mechanics

Low level technology problems are of the type which make it difficult

to transfer data (e.g., source code) from the operational system to the

Software Engineering Environment in which the Reverse Engineering

Mechanism is housed. These range from mismatches in tape formats

available and readable, to the introduction of spurious information (or
the removal of useful information) in a transfer across a Local Area

Network. In two of the projects we were overseeing, this process
caused a delay ranging from one to six weeks.

7.2 Local Variations in Programming Languages

Supposedly standard programming languages may have local variations

taken care of by local pre-processors. An example of this was a system

where we found (by browsing through the repository of abstractions)

that several paragraphs in a COBOL program were referred to but were
not found in the code translated. We were informed that those were

taken care of at "pre-compile" time!

7.3 Stylistic Variations

A system which has evolved over time usually has been worked upon by

several programmers. Each of these may have learned particular styles
of programming. Further, these styles also evolve over time. However,

there never is time to bring previous programs upto date to conform to

current styles. Hence, it becomes difficult to comprehend why one

program grouped a certain set of operations differently from another
program in the same system.

H. Sayani
ASTEC
10 of 24

7.4 Lack Of Standards And Conventions

Even today very few development shops have comprehensive standards and

conventions for programming. A classic example is the naming of data

and procedures. Both the style of naming and the scope of this naming

can cause a significant amount of problems when they are being studied
as abstractions. For instance a name may be made up of components

which may be abbreviated inconsistently. Or, a data name may be

qualified by the program it appears in (making it de facto local data)

even though it is shared globally, thus making it difficult to

synthesize a system-wide view of data. One extreme case of this type
was where a database designer had used a distinct name for each data

element in every view rendering the database design useless.

7.5 Technology Transfer

Technologists often do not realize the importance of recognizing the
effect of commerce on their products. To illustrate, while a

technologist would be self-congratulatary about the eight to one

savings of costs, a contractor would be concerned about the "cost plus"

implications of such a technology! Finally, individuals who have

learned to perform tasks such as program maintenance without the use of

tools may often feel threatened that much of their expertise would be

rendered superflous with these tools. They would be quick to point out
the flaws of these tools after all they were not invented here!

To summarize, the Reverse Engineering Mechanisms we discuss here are not

simple, pre-packaged solutions that can be brought in to an organization and

by their mere installation provide all the potential benefits. We feel that

these tools are better compared to the concept of the big-8 "practice";

i.e., they need to be adapted to the local situation, helped along with
consultation and the evolved tool then left behind for use by the

organization, if desired.

H. Sayani
ASTEC
I1 of 24

8.0 FUTURE DIRECTIONS

We feel that the Reverse Engineering concept has barely touched the tip of the

development iceberg. We ourselves are interested in several aspects of the

process and will highlight some of these below.

8.1 Improved Interpretation Of Source Code

Current approaches use the "compiler-compiler" approach for the

interpretation of the code and the performance of actions to be taken

when known constructs are recognized. This approach requires

"re-binding" of mechanisms every time the simplest of variations has to

be made. By its very nature, it requires the tool developer to perform

this task. We see this process being replaced by more sophisticated

mechanisms which would not only make the task easier, but also allow
the end-user to make the selection of actions to be taken. We feel

confident that this can be achieved because we have developed this

technology and is in use in our bridges to CASE tools.

8.2 Better Repository Interfaces and Abstractions

There are several approaches to translating code to some other form.

One is a simple one pass approach which interprets the code; another is

a multi-pass translation with internal "symbol table" development; the

last pass translates the contents of the symbol table to the desired

abstraction. The most desired approach would provide an active

interface to a dictionary system which would allow the enriching of a

dictionary database as more information became available about an item

from the source code. This and the need to regenerate codes in

different languages would require the development of a more

sophisticated abstract model of programming.

8.3 Better Interfaces To Other Tools

Since the interpretation of code as abstractions results in a

complicated information system, it is natural to provide some

computer-aided support for browsing through these abstractions. Good

repository systems such as PSL/PSA provide this capability. Another

natural medium would be CASE tools. Hence, it would be appropriate to

perform a translation of code into, say, Structure Charts or Data Flow

Diagrams which could not only be examined by CASE tools, but also

modified using the CASE tools. This process is becoming feasible now.
We feel that such needs will also lead to improvement in curent

methodologies for analysis and design and an improvement in the

"forward" process of systems development by requiring more precise

traceability and standards.

H. Sayani
ASTEC
12 of 24

8.4 Re-generation Of Code

While "re-engineering" mechanisms can perform this task today, it is

performed in a rather restrictive sense. Usually, the regenerated code

is in the same language as the original code, or the translation is an

incomprehensible line by line encoding of code From the source language

to a target language. The latter approach often results in a "step

child" syndrome. The newly generated code is neither understood by the

source code specialists nor the target code specialists. We feel that

the abstraction to a higher level view and the re-construction to a

view specific for a desired target language would be more appropriate.

This requires a better abstraction model (as discussed above) that

models both the source and target languages and programming in general.

8.5 Technology Transfer

Finally, we have been sobered enough by practical experience of

transfering technology to using organizations to realize that the best

of technology will only perform to its full potential only if properly

introduced. This requires careful handling of issues ranging from

politics, human factors, finance and hidden agendas. Some of us feel

that the consideration that needs to be given to these factors often

outweighs the technology by as much as four to one!

H. Sayani
ASTEC
13 of 24

THE VIEWGRAPH MATERIALS

FOR THE

H. SAYANI PRESENTATION FOLLOW

....' ,"=,.,V,."D PAGE. !....'....' INTENTIONAIY BLANK

ASTECi........i l........._i......_i.......il. i i i i if! ii i iS i ii_iiii!
REVERSE ENGINEERING

WHAT IS REVERSE ENGINEERING?

Working back from a phase in the development Life Cycle

• from program code

• to a possible design which the code implements

• or, to the requirements which the design addresses

• or,

In the absence of supporting documentation, it is akin to

• An Archaeological process

• " ...we see these hieroglyphics, therefore, "

Success depends on:

• recognition of possible:

• Loss of information

• Ambiguities

• willingness to"

• Supplement the information

• Capture it formally

© 1988 by ASTEC

H. Sayani
ASTEC
17 of 24

REVERSE ENGINEERING

WHY PERFORM REVERSE ENGINEERING?

To understand the current system

• "...Why does the system behave like this when we..."

To be able to make changes to the current system (maintenance)

• "...If we were to change this, what would its impact be?..."

To be able to modify the system (enhancements)

• "...Where would we best add this functionality?..."

• "...How would it affect the data structures? "

To merge a system with another (integration)

• "...What is the common data?..."

• "...What are the new interfaces?..."

To inject new technology into an existing system

• "...Replace the various file access methods with a DBMS..."

H. Sayani
ASTEC
18 of 24

© 1988 by ASTEC

,,.3

_o
F--CO

0"3
t--

¢'v"

_,..,, O

(..9

¢..
_,o

o_

<

I,,-

man =lnii

(D L
"0
0

u_

(D _ a.-
oO W
e"_-

2

ft.

o

>

_d

o

>.., ttl
(,._...,-,

--,._ o c"
_ .-,._ _
I:)").,-, E

o.-_
O._rU

r'_ (..,o

£,..

(.
c'l
.L
(U

..(,..,,

c"

c" L..,

""_ O

(... oo
O

0

z
nun
>
LU
or

IIIIIIIII

H. Sayam
ASTEC
19 of 24

i iiiii iiiii ii ASTEC iiii iiii iiil ii ii i ii !i! ii il iii ii ii i i ii i i! i li ii_ ii ii

REVERSE ENGINEERING

METHODOLOGY

Steps involved:

• Ensure that parser recognizes deviations from norm

• Instruct translator to handle both normal and special constructs

• Produce appropriate abstractions in target dictionary language

• Derive appropriate reports from the dictionary

• For browsing

• To produce formal documentation (per specific standard)

• Interface with other tools (e.g., a CASE Graphics package)

• Merge other information

• About changes

• Another system

(• Interface with other translators to reproduce code

• In the same language

• In another language)

H. Sayani
ASTEC
20 of 24

© 1988 by ASTEC

ii iiiiilliiiiii ASTEC iiiiiililiiiiiiii!iiiiiiiliiiiiilii iiiiiiiiii!iiiiiiiiiliiiiiiiiii iiiiif!iiiii!iiiiiiiiii iiiii!iiiiilli_iiiii!iiiiii!i
REVERSE ENGINEERING

SCENARIO OF USAGE

Analyze individual "code units" (e.g., Programs)

• Examine the Procedural architecture

• Study the Data Structure

Synthesize desired aspects across the code units of the system

• Procedural Interactions

• Data Commonality

Note: May need to rationalize names

Pinpoint answers to questions that precipitated the process

Take necessary action

• Modify the abstractions (& regenerate the code)

• Change the code

© 1988 by ASTEC
H. Sayani
ASTEC
21 of 24

iiii!i!iiiiiiilliiiiiiiii!!!iiiiiiiiillASTEC iiiiiiiiiiiiiiiiiiiii!i!i!iiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiiiii!i!iiiiiiiiiiiiiiiiiiiiiiiiiiiii!!iiiiiiiii!!iiiiiiiiiiiiiiiiiiii!!!iiiiiiiii!iiiiiiii!i!iiiiiiiiiili!iiiiiiii!i!iiiiiiiiiiiiiiiiii_iiiiiiii!ii!iii
REVERSE ENGINEERING

EXAMPLE OF USAGE

Large System to be maintained:

• A subsystem with:

• 45 major functions,

329 sub-functions,

2711 primitive functions

• 36 data stores

4,498 record types: several with over 180 elements

Interactions

e.g., a Function uses 64 elements and changes 61

an Element used by 422 Functions and changed by 455

Reported Savings (not counting outliers)

• 8 to 1 savings in time

• vastly reduced "re-work" (no unaccounted ripple effects)

H. Sayani
ASTEC
22 of 24

o 1988 by ASTEC

iiiiii!i!i!!i!iiiiiiiiiiii!iiiiii!!ii!iiiijiiiiASTEC!iiiiii iii iiiiiiiii!iiiiiiii iii iiiiiiiii!iiiiiiiiiiii iiiiiii i iiii!iiiiiiiiiii iiiiiiiiiiiiii iiiiii!!iiiiii!ii! iiiiiiiiiiiiiiiiiiiii iiii !iiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiii ii iiii i i iI
REVERSE ENGINEERING

POTENTIAL PITFALLS

From the mundane

• Inability to transfer source code from operational

environment to the Software Engineering Workbench

Through the expected...

• "...Did not know you could do THAT in FORTRAN!..."

And People's Style...

• "Why would you clump those actions in one Paragraph?..."

Along with Organizational Standards (or lack of them)...

• "That's only the third way to spell EMPLOYEE-NUMBER..."

And esoteric issues...

• "...We should get a better abstract model common to ..."

To Politics

• "...If we perform this job 8 times faster, we get paid less..."

And Technology Transfer

•NIH

© 1988 by ASTEC
H. Sayani
ASTEC
23 of 24

iiiiiiiiiiiiiASTEC iiiliiii!i!iiiiiiiiiii!!!!ii!iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiliiiii!iiiiiiiiiiiiiiiiiiiilii!!iili_ iili

REVERSE ENGINEERING

FUTURE DIRECTIONS

Improvements in the Technology

• Interpretation of Source Code

• Broader in scope

• Adaptive (to style and usage)

• Abstractions produced

• Sophisticated conceptual model: across languages

• Better interfaces to CASE tools

• Formal adaptation of Methodologies for Design and Analysis

• Improvement in the Forward process (Traceability, Standards)

• Re-generation of program code

• Original language

• Different language (using "filters")

Improvements in the Technology Transfer

• The delivery platform

• Education of Engineers

• Acceptance by Management as part of the forward life cycle

H. Sayani
ASTEC
24 of 24

© 1988 by ASTEC

N91-10613
I '

Ada Software Productivity in Prototypes:

A Case Study

Jairus M. Hihn

Hamid Habib-agahi
Shan Malhotra

Jet Propulsion Laboratory
California Institute of Technology

j P .;

f_

ABSTRACT

This paper is a case study of the impact of Ada on a Command and Control project completed at the Jet
Propulsion Laboratory (JPL). The data for this study was collected as part of a general survey of software
costs and productivity at JPL and other NASA sites.

The task analyzed is a successful example of the use of rapid prototyping as applied to command and
control for the US Air Force and provides the US Air Force Military Airlift Command with the ability to
track aircraft, air crews and payloads worldwide. The task consists of a replicated database at several
globally distributed sites. The local databases at each site can be updated within seconds after changes
are entered at any one site. The system must be able to handle up to 400,000 activities per day. There
are currently seven sites, each with a local area network of computers and a variety of user displays; the
local area networks are tied together into a single wide area network.

Using data obtained for eight modules, totaling approximately 500,000 source lines of code, we analyze
the differences in productivities between subtasks. Factors considered are percentage of Ada used in
coding, years of programmer experience, and the use of Ada tools and modern programming practices.

The principle findings are the following. Productivity is very sensitive to programmer experience. The use
of Ada software tools and the use of modern programming practices are important; without such use Ada
is just a large complex language which can cause productivity to decrease. The impact of Ada on devel-
opment effort phases is consistent with earlier reports at the project level but not at the module level.

Introduction

The Economics Group at JPL has been involved in the collection and analysis of soft-

ware cost and productivity data for the past three years. The NASA Historical Database
contains data for over 100 subsystems including 10 different projects.

[Economics Group 1989] The JPL Software Database currently contains data for 4 projects

with 39 subsystems.[SORCE/Economics Group 1988] During the coming year data on seven

more projects will be collected. A relatively unique feature of these databases is that

they contain data on all the subsystems of each project for which information could be
obtained. Most software databases used for research contain only one or two observa-

tions from any one project. The advantage is that we are able to control for differences

between projects which are not directly measured by the specific database fields and

also can also analyze within project variations in effort and productivity. The disadvan-

J. Hihn
JPL
I of 32

tage is that a larger number of observations must be collected to get a sufficient number
of independent data points for statistical analysis.

The data collected is primarily based on the COCOMO definition of a software environ-
ment. [Boehm, B. 1981] Table 1 lists the cost driver contained in the database which de-

scribe the environment. The database also includes size, measured by executable
source lines of code adjusted for inherited and modified code, and effort, measured by
work months. The portion of the life cycle for which effort figures have been collected in-

cludes from the requirements analysis phase through test and integration. Sustaining
engineering and the systems engineering effort to develop the requirements are nor in-
cluded. However systems engineering effort spent on requirements design updates and
formal design reviews is included. Two estimates of effort were collected. Technical ef-

fort figures gathered from interviews with the technical leads, estimates direct effort by
programmers and the technical managers. Implementation effort figures derived from
the task management office, include all labor charges to the project from the task man-

ager down. The non-direct labor charges are distributed across the subsystems on a
proportional basis. These charges include integration and validation testing, documen-
tation and management labor time. Implementation effort also includes secretarial time

which could not be separated out. Effort figures do not include upper level project man-
agement or system engineering previous to the SRR.

Table 1

Database Description

Product Attributes

Requi red reliability
Software complexity
Database size

Personnel Attributes

Analyst ability
Analyst experience

Programmer ability
Language Experience
Virtual Experience

Computer Attributes
Time constraints

Storage constraints
Host volatility
Turnaround time

Project Attributes
Software tools

Modern programming practices
Schedule

The average productivities in the NASA Historical Database are 1.5 to 3.5 SLOC per
day for flight software and 7 to 10 SLOC per day for ground based software. There were
a few subsystems which reached approximately 14 SLOC. In the JPL Software

Database, the average productivity ranged from 6 to 18 for 3 DOD projects and one
ground data capture project. There are two command and control projects which had

the highest productivities of the projects we have studied. Project 1 used Ada and rapid
prototyping to reach a implementation productivity of 17.9 SLOC/work day. Project 2

J. Hihn

JPL
2 of 32

which was very similar to Project 1 did not use Ada and had an implementation produc-

tivity of 13.5 SLOC/work day. The purpose of this study is to attempt to isolate the im-

pact of Ada versus the impact of software tools, modern programming practices and
other environmental factors on productivity.

Project Description

The US Air Force Military Airlift Command (MAC) runs one of the largest airlines in the

world. Scheduling problems are accentuated because flights, crews, and payloads can

be changed at any time in order to meet political and military objectives. MAC is in the

process of automating its command and control system by replacing its current
scheduling system, based on grease boards and the telephone, with a network of

workstations supporting a replicated database with real-time displays. Two major

components of MAC's Command and Control Automation Project are being completed

by JPL. Project 1 supports the vertical command and control operations, and Project 2

supports the actual execution of tasks. Project 1, a successful example of the use of

rapid prototyping, consists of a globally distributed replicated database with sites from

Germany to Hawaii.

Developed as a prototype which became an operational system, Project 1 had an
unusual software life cycle for a delivered system. JPL was required to develop Project

1 within two years at minimal cost. The functional requirements were vague because

the sponsor was not very computer literate. The project manager compensated for

these factors by waiving many of the standard formal design, documentation, and

testing requirements and by developing a very close working relationship with the

sponsor. The final requirements evolved as part of a joint effort between the project
team and the sponsor. Detailed documentation, except for the user's guides, could be

written after the project team and the sponsor had agreed that the system was working.

Project 1 consists of five application subsystems and three support system subsystems.

The applications support the following five MAC functional groups: Current Operations
(DO0), Transportation (TR), Command and Control (DOC), Logistics (LRC), and the

Crisis Action Team (CAT). The software work breakdown structure is similar to the
functional breakdown; therefore, the descriptions which follow of functional groups also

serve as descriptions of corresponding software tasks. DOO performs flight scheduling
and resource planning. TR is responsible for personnel ticketing and cargo loading and

unloading. DOC monitors the progress of each flight. When en route mechanical

failures occur, LRC provides information.which assists in the prompt servicing of debili-

tated aircraft. CAT controls system responses in the event of a threat or emergency.

System support for Project 1 resides in three subsystems: Graphics, Operating System
Shell, and Database. Graphics produces a graphical display of database information

while allowing the user to manipulate screens via a user interface. Operating System

Shell provides an interface to VMS OS, network commands, and low level VMS

functions. Database supports database design and control.

J. Hihn
JPL
3 of 32

Table 2

Development Data

Subtask

Technical Implementation Technical Implementation
Size Effort Effort Productivity Productivity

(KSLOC) (Work Months) (Work Months) (SLOC/day) (SLOC/day)

Application Software

DOC 72 118 207 32
18

DOO 115 140 245 43 25

LRC 45 28 49 84 48

CAT 23 36 63 34 20

TR 70 60 105 61 35

System Software

Graphics 20 72 145 15 8.3

Common 110 258 453 22 13

Database 37 110 193 17.7 11

Total 492 822 1,460 31.5 17.9

The development data collected was based upon the status of the project in January
1988 which was before the software system was actually converted into a formal prod-
uct. The total size was approximately 500,000 source lines of code. 1 The sizes of the
modules range from 20,000 to 115,000 source lines of code. The code count is based
on executable source lines of code; the size figures do not include comments or blank
lines.

The productivity figures for the Project 1 subsystems are presented in Table 2. The
average technical productivity of Project 1 as a whole was 31.5 source lines of code per
day; the average total productivity was 17.9 source lines of code per day. At the time of
final delivery of the system implementation productivity had increased to an average of
20 SLOC/work day. This occurred even though documentation and testing effort in-
creased significantly during the last release. This is most likely a result of the staff being
further up on the learning curve with respect to Ada and the application domain. Among

1. At final delivery Project 1 will have reached approximately 750,000 source lines of code.
J. Hihn
JPL
4 of 32

the systems tasks, total productivities averaged 11 and ranged from 8 to 13 source lines

of code per day. The application tasks had total productivities averaging 25 and ranging
from 18 to 48 source lines of code per day. In general, application software is

associated with higher productivities than system software because application software

is less embedded and usually does not have to incorporate low level implementation

details.

Table 3 summarizes the values of the environmental factors included in the database

for Project 1. However, the table shows that experience and capability were rated high;

requirements volatility was rated low; and the use of modern programming practices
and software tools was extensive throughout the project.

Table 3
Project 1

Development Environment

Product Attributes

Computer Attributes

Personnel Attributes

Project Attributes

Low to Nominal

Low to Nominal

High

High

ANALYSIS

Project 1 developers achieved higher total productivity than the average NASA project

teams developing ground software. Several factors combined to permit this
achievement: the ability to match highly qualified personnel to the task needs, the use

of a prototyping methodology, the organizational structure of the development team, an
abundance of development tools, excellent communications with the sponsor, develop-
ment team cohesiveness, and the use of Ada.

The development environment contributed to the high productivity of the project staff.

The implementation managers were able to match skills and project needs with pro-

grammers whose capability and experience were well above average. Project 1 was
developed as an incremental prototype; the development strategy cut the standard de-

velopment life cycle. User's guides were written in parallel with the software. A single

design document was written at the end of the project which was the equivalent of an
FRD, FDD, SRD, and SDD combination to assist during the sustaining engineering

phase. In the testing phase a formal independent validation and verification was omit-
ted; and there were no formal preliminary and critical design reviews by an external or-

ganization. However, there was a formal internal review prior to each major software re-
J. Hihn
JPL

5 of 32

lease. The small overall staff size facilitated open communication within groups,

between groups, and with the sponsor. The sponsor provided ample hardware which

was appropriate to each task. Finally, the majority of the tasks were of moderate diffi-
culty or complexity.

One other factor that potentially contributed to the high productivity of Project 1 was the
use of Ada. At the time of the initial survey fifty percent of the total code was Ada and

varied from 0 to 90% across the subsystems. When the project started about half of the

programmers had an average of 1 year experience with Ada and the rest had no experi-
ence. A few had the maximum possible experience of about 2 to 2.5 years. There was

no formal requirement that Ada had to be used. In the early 1990's Ada will be a more

mature language, but this level of staff quality was the best that could be hoped for
when software development began two years ago.

Ada advocates claim that the proper use of Ada, with its software tools, strong type
checking, and support of modern programming practices, increases programmer

productivity by over 100% and decreases program maintenance costs[Royce, W. 1987].

It is difficult to test these claims, however, because one must be very careful when

comparing the productivities of programmers coding in different languages. In
particular, Ada has several characteristics which can cause an Ada program to have

more or fewer lines of code than other third-generation language programs with the

same functionality. Ada's syntax for using objects can inflate an Ada program's code
count. On the other hand, Ada's ability to use generic procedures can deflate Ada's
code count, since a generic procedure would have to be written a number of times in a

third generation language. A recent survey found that the effect of Ada on code count

depends upon the application: business and scientific applications tend to result in larg-
er Ada code counts whereas avionics and automation projects tend to have smaller Ada

code counts.[Reifer, D. 1988]

Accurate measurement of the impact of Ada on productivity requires that major differ-

ences between organizational structures also be isolated. When subsystems of very
different projects are compared environmental differences not captured in the data can
arise. These differences especially relate to environmental factors such as communica-

tion between sponsor and contractor and cohesiveness of the programming teams. The

result is very large variances in the data; conceptually the problem is that of comparing
'apples and oranges'.

The results of productivity comparisons between different projects and especially be-
tween languages is very sensitive to both the type of application and unexplained envi-

ronmental factors. To reduce the impact of these problems we will emphasize compari-
sons between modules with similar amounts of Ada and comparisons between projects
that are very similar in nature. The other project, Project 2, that will be referenced in the

analysis is also a command and control task performed under the same project office at

JPL and also for MAC. Both tasks were eventually housed in the same building and
both were prototypes at the time of this survey.

J. Hihn
JPL
6 of 32

.m

>
,m

O

13_ ,,,,

r- O

-'-" O
-,_ O
c-- ._j

o3
E

Q.

E

5O

45

40

35

3O

25

2O

15

10

Figure 1

Implementation Productivity Unadjusted

• LRC

• TR

• Database

_

• ! , i • | . | • | • | , | • | • _ • a00 10 20 30 40 50 60 70 80 0 100

% ADA

Figure 1 plots productivity, (SLOC/implementation effort)/19, against %Ada, the percent
of code in Ada for a module. 2 The graph is suggestive of a positive correlation between
the percent of a subsystem's code written in Aria and the productivity of that subsystem
which would represent the combination of the impact of Ada and the cost of mixing lan-
guages. Comparing the average productivity of those modules with less than 50% Ada
to those with greater than 50% Ada one may be tempted to draw the conclusion that
use of Ada increases productivity by about 15 SLOC/day which would be close to a
100% increase. However there are many other differences between these subsystems
which also impact productivity and these must be identified in order to isolate the actual

impact of Ada on productivity.

For example, compare the productivities of subtasks with similar percents of code
written in Ada. LRC, TR and Database are three such modules. Programmer

experience and the use of modern programming practices and tools are significant dif-
ferences between these subsystems. At the time of the survey the LRC technical lead,

which achieved the highest productivity, had 2.5 years of experience coding in Ada and
six years of experience object-oriented design. The nature of the LRC task allowed
the team to use objects extensively. The LRC staff also consistently employed

modern programming practices and software tools. The productivity of the TR team

2. 19 represents the actual number of work days in a month when discounting for holidays,

sick days and general meetings. [Boehm, B. 1981]

.I. Hihn
,IPL
7 of 32

was lower than that achieved by the LRC staff; the TR staff did use modern

programming practices and tools, but the TR programmers, with one to two years of
experience coding in Ada, were less experienced than the LRC team members. The
Database team were less productive than either the LRC or TR teams. Database had

zero years Ada experience because the only Database Ada programmer left the project
on very short notice. The remaining team members were left to tackle a complex task

with high required reliability while learning to use a complex language. The
inexperienced Ada team did not use software tools and did not follow modern

programming practices. However, the following question remains: just how much of the

productivity differences do experience, tools and modern programming practices when
combined with Ada explain?

Before we can answer that question we need to control for other known environmental

influences. Some projects are more complex; others have a greater required reliability.
If the database were large enough, we could estimate the influence of the environmen-

tal factors including the presence of Ada. Since there is not sufficient data, a second

best solution is to use known estimates of the effort impact of the environmental factors.

COCOMO provides estimates based on non-Ada projects. Therefore we can normalize

for these factors using the COCOMO weights, and the remaining productivity variations

between modules are likely to be related to the presence of Ada.

Assuming that

Effort = A oL B °EAF

where L is executable source lines of code and EAF is the product of the cost drivers or

environmental factors then adjusted effort is just Effort/EAF. Adjusted productivity then
becomes

ATOP = [L/Effort]°EAF.

J. Hihn
JPL
8 of 32

Figure 2 displays the plot of adjusted productivity against % Ada. After adjusting for all
the software development environmental factors except language experience the ad-

justed productivity values vary from 6.1 to 11.7 SLOC/work day. All but two subsystem

adjusted productivities fall between 6.1 and 8.6 SLOC/work day.

Figure 2
Productivity Adjusted

Except for Language Experience

,m

> 16

o 14

_ _128-o
_10

c 0

o _ 8
_ 0

J

E_4

__ 2

_E 0

÷ LRC

÷ ÷ ÷ ÷ TR

÷ Database

÷

.............0 10 20 30 40 50 60 0 0 90 0

% ADA

The average productivity for those module with less then 25% Ada is 6.9 SLOC/work

day and for those modules with greater then 60% Ada it is 9.1 SLOC/work day. Based

on a two-tailed t-test there is only a 10% probability that these represent the same distri-
bution. Hence we can tentatively conclude that those projects with a high Ada content

had a productivity 2.2 SLOC/work day higher then those with little or no Ada.

Compared to the average productivity for the whole project this represents a 12% in-
crease.

Within the group of modules with greater then 60% Ada the LRC module attained the
highest productivity of 11.7 SLOC/work day which represents a 4.8 SLOC/work day in-

crease or 25% improvement. The high productivity of Logistics is probably reflective of

their being further up on the learning curve. Logistics did have one member who had

the maximum possible Ada experience and substantial experience with object oriented

programming. This suggests that three years of experience with Ada and an Ada pro-
gramming environment might represent an important turning point. This point is further

reinforced given that during the final release productivity increased to 27 SLOC/work

J. Hihn
JPL
9 of 32

day which is when those who started with about 1 year of Ada experience would have

reached over three years of experience.

One other comparison that can be made is to compare the adjusted productivities be-

tween two similar projects one which uses Ada and one that does not use Ada. The

comparison project used Pascal. These results are reported in Table 3. The compari-

son project is also a command and control task for the Air Force and even for the same

contractor. The one major difference that cannot be controlled for is that Project 1 start-

ed out as a prototype but became an incrementally developed delivered system and
project 2 was a prototype from beginning to end. After adjusting for differences in com-

plexity and the lack of software tools the non-Ada project has a higher average adjusted

productivity. Based on a two-tailed t-test there is only a 5% probability that these repre-
sent the same distribution.

The implication is that if you take away the tools and rules and adjust for differences in

complexity and other environmental factors then the main impact of Aria as a language,

without its tools lowers productivity when the programming staff has an average of one

year experience. From the previous discussion we also suspect that once the experi-

ence level gets above three years then this difference will no longer be statistically sig-
nificant.

Table 3

Average Productivity

(SLOC/work day)

Total Adjusted

Project 1

(Aria & C)

Project 2

(Pascal)

17.9

13.6

7.7

13.6

For this small sample the inference that can be drawn is that for experience of one year

or less we can explain the majority of the observed variation in productivities by what

we know about the impact of software tools, experience, etc on other languages.

Software tools are important and a sophisticated programming environment will in-

crease the productivity of any language. This interpretation must be discounted by the
fact that Project 1 is a prototype and therefore the testing and integration phase plays a

less significant role in determining development costs and it is here that one would ex-

pect Ada to have its most significant impact on development effort and productivity.

Ada and the Development Life Cycle

Previous studies have reported that Ada increases the effort in design, and decreases

J. Hihn
JPL
10 of 32

effort in the integration and test phase. One phase breakdown that has been reported
is 50:33:17 for Ada and 40:38:22 for FORTRAN.[Royce, w. 1987] Comparing to Projects 1
and 2 again we can see to what extent this pattern holds up for prototypes. Figure 3
shows a phase breakdown for the whole project of 36:37:27 for Pascal and 43:39:18 for
an Ada and C project. As expected, prototypes spend less time in design and more in
coding. Furthermore the Ada prototype spends more time in design and less in testing
then the non-Ada prototype.

While the effort by phase breakdown for the projects as a whole yields a consistent

story the view from the module level does not. There does not appear to be any consis-

tent pattern whatsoever.

Phase Distribution for

Command and Control Prototypes

100-

90-

80-

70 -

60-

50-

40-

30-

20-

10_

r _ • _%_%1%_ %,Z:_ ,

37

iiiiiii!iiii!!i!!!!i!iii!iiiiiiiiiil

Project 2
Pascal

Integration and
Test

Coding

Detailed Design

Preliminary

Design

Requirements

%%%%%%%%%

%%%%%%%%%

%%%%%%%%%

%%%%%%%%%

%%%%%%%%%

¢CCz_s1_z

39

Iiiiiiiiiiii!ililiil!!!ii!!

Project 1
Ada and C

J. Hihn
JPL
11 of 32

-o
C

C
o

.¢_;,

oo
L

c--

CO
]>" C
L

c F
(D

C __

C _) 0 q) _._ _
-- I_ u £3 o.. r-'_ DE

63

(D

El_ (D

0

c_
0

:Z) #-_

","--

0
O3 L

orq-

L

L 0
0

III

::

S_SS_S_S

--_:: i_":_:'_i_----'_
i_ _iiiiiii

I..............1% % _, % % ,.. _, _. % -., _, %,.

:::iiiii!i ili _

iiiilii'_i"@i!i_iii[i[i__

I
:!:: $._ :.'::: :_::

: ::::::_:::,::_:_.$:$_:

!.............L..!U,i,

J'S ===

=====================:::

::: :::: :: :_._.'.':_.:::: :_!_i'_:.!_i_:_:Si:!::

::::::::_:_ :::::::::::::::::::::
::

0
Oh

C_
cO

0
cO

LO
kO

Lr_

0

J. Hihn
JPL
12 of 32

Conclusion

The data reflects the state of Project 1 before it actually became productized and there-

fore contains reduced effort figures for testing and documentation, which greatly in-

creased during the final release. There is also not any data on maintenance costs.

Therefore the two areas where Ada's strong type checking and compiler have an effect

are not reflected. In addition there was no effort to make the code portable or reusable.

Any conclusions are tentative and should be treated as hypothesis for future research.

As part of our continuing software costing analysis at JPL, two Ada projects and one

Lisp project will be surveyed during 1989 which should make it possible to better isolate

the impact of software tools and modern programming practices from other features of a

language.

Given these caveats then our tentative conclusions are the following for Ada in a proto-

typing environment.

(1) Analyst and programmer experience in Ada of three years or more could in-

crease Total Technical Productivity by 3-4 SLOC/day or a maximum of 25%.

(2) Technical experience and ability, modern programming practices and the

use of software tools are very important in achieving high programmer produc-

tivity.

(3) For any language the combination of highly capable and experienced per-
sonnel, with the discipline of modern programming practices and a sophisticated

programming environment should produce comparable levels of productivity to

that observed for Ada in this study.

(4) Effort in the three major phases of the software lifecycle appears to shift

such that time spent in design is increased and time spent in verification and
test is decreased.

J. Hihn
JPL
13 of 32

Bibliography

Boehm, B. 1981 Software Engineering Economics, Prentice Hall.

Economics Group 1989 NASA Historical Database, JPL/Caltech, January

1989.

Reifer, D. 1988 Softcost-Ada: An Update, Fourth Annual COCOMO Users'

Group Meeting Workshop, Pittsburgh, Pa., Nov. 2-3, 1988

Royce, W. 1987 Estimating Ada Software Development Costs for C 3

Systems, TRW Defense Systems Group, Preprint.

SORCE/Economics Group 1988 Software Productivity Analysis Database,

JPL/Caltech, 1988.

J. Hihn
JPL
14 of 32

THE VIEWGRAPH MATERIALS

FOR THE

J. HIHN PRESENTATION FOLLOW

m

t_

|m

"0

1,-.

n

0 t-

_- _ _._

,-'0_

I

_D
O t-'O
0--0

O0

t_
0

J. Hihn
JPL
17 of 32

INTENTIONAH.Y BI.,ANI[

ta0

o

O
,k

t2.

O

C
O

> t"

¢D

O "O
o_ O ,_

60

C
,(

ta0
c-
o

t._
.-3

0
c-
O

0

J. Hihn
JPL
18 of 32

c

E
O3

O_
C
o_
E

E
0
I,,-

"1_
0

t-
O

c- 4.,
0 r-
E _
_E

mE

"O E

O._ _

_ C
o--

cE
.--

ES

M.....-

t-- o
O'_
E_

o

!

J. Hihn
JPL
19 of 32

>

o

"o
o

n

CD
0")

.<

0
CD O0 .._1

o _o _,
oo ,-_ -__

o

0

Q.

0

E
E

°_ X

x 0
0 I"

C_. O_
O_

"4"" _ .0

a _ m _
o r.D "_

-r-- .,_, g _
0 r-- _
_ °_

_= _ _ _
0

< a.
z --_

_ 0

i ,,,m_

0

o

0

"1"- _ _

J. Hihn
JPL
20 of 32

0

c-
O

0
"1--

.,... -0
0 C

0"1_
*- e"

E
0
(.)

r_

c-
o

E

0

(1)

n

.o_ >,-o

>
c-'._ o
o o

v

o o

__q

_ E

_- o

_ Eg
e-,.-

k- o

v

o

._o

o
2_

o

CO tO CO 0 I./')
•w- ¢xl _ 0...I CO

_ o
0,1 0,1 w,-

0

r-
.o
m

r_

.,- '_" 0,_ CO r,.O

0'_

¢0 CO T- I'_
CO _ _

I'_ I.O
i,o o,I

04 _ .,r-
•*-'- CO

0
0')

E

0

',a"

(NI
o,I co o (M
I_. Lo .,.-

(',,I .,- CO

o o I'_

0 0 o ,._ n-O 0 _ _-
a ID .__ 0

.o ,_
t.- .g_

o _ o
0 o o

J. Hihn
JPL
21 of 32

C

E
E
0

__, c-
OLU

Oc-

O_
0

>

£3

-0

<

Q_

0

0

O_

O_
0

m

>

.O"
C

"0 C
C

0 -0 _-'

-_ . o
c- co _

X _
(2) _ (--

o23 --- _

0 Q) 0
_ o c c

0

13.. LLI 13_

J. Hihn
JPL
22 of 32

c-
O

c--
OtJ.I

O ¢-

E

¢.. ¢--

E F::

0

D

0 0
Z Z

0 0

0 0
__1 ,._1

t_

,,Q
|m

!._

,,<

0

|m

0

..c

-r"

|m

,<
m

C
0

0")

"1-

,,Q
iim

,,<

0

0_

0

f_

J. Hihn
JPL
23 of 32

E

0
C_

-0

J. Hihn
JPL
24 of 32

q'j
,.i.,,..a

O

O
I,...

E
,L

C
O

t"

cO

00
0
0

0

0

o_

CD

0

c_
-0
<

0_

00
0
0

0
C

C

C

0
0

c-

E
O_
0

-0
M_

0

-0
<

-0
C

C
0

o_

C

C

"0
0

0

O

C

0_

_C

0
4...--

q)

_C

0
O_

c"

c.O

"0
(1)

"0

0
i-"

if)

i'-"
b-"

E
if)

N

E

ffl

r-

(D
"0
0
0

0

C

C_
C

Q_
l..,.

E
0
0

C

c-cD

c _

_ C

,l.,J _

_C

m_
_1:=

E_5

0
O_

0

(1)
00

(1)

0
O_
O_
Z_
00

0

"0
(D

"0
c"
(1)
0..
X

0
c-

oO

0

"0
(1)
c-
O')
00
(1)

"0
00

"0

-0
C

O_

m_

c m

-or-_

i-- o

J. Hihn
JPL
25 of 32

>.,
o_

>
I--

0

0

EL

c-
O

<

0

0

o

E

J. Hihn
JPL
26 of 32

<

rn

o
o

O

O
0

"_ co

o
'1_

0

o

o

0
or)

0
o4

0

o
O U") O U') O U30 I/) O U90
U9 _" _" CO CO O40J _-- 1--

/_eP/OOqS

,_l!A!lonpoJd lelOl

<
D
<

o_

cO
(D
0O

(D
I,,-
O
c-

CO
-O
<[

O

c-

(n

>,

>

O

-O
O
K.-

O_

C

(I)
(n

K=.
O
C

&..

C

C_

CO

t_

O

09
K_

_4

Cl.-- o
tOO

_E

r-
.E

tO

O

O

IX.

c"

-oE
t

121.. _

>,__m.__o_
>o_
_ _-_j

0
03

0

(D
0
X

ILl

<

rn

0

• 0

co _ o4 o
•,- .,- .,-- .,- co (.O _ _ o

_eP/OOqS

,_l!^!10np0Jd I_10J.

0
0

o

0
00

0

0
t,.D

0
.tO

0
",a"

0
CO

0
04

0

0

,<
a
,<

o_

J. Hihn
JPL
27 of 32

C

-Oq_

"_ Xo'J
_LLI

c

.,-,_0
_.J

O0

13_.-.,

0
X

ILl

m
÷

÷ 0
÷

4.

¢.13 _" OJ 0
,-- _ ._- ._- CO CO _ 04 0

XeP/O0-1S
:].!A!,on POJ d le_,0/

0
0

o

0
cO

0

0

0
1..0

0

0
CO

0
0,1

0
,f=,.

0

o_

J. Hihn
JPL
28 of 32

O,l

0

0 o

IX.t-

O o
_0
"0 "0

CZ."O

,-E
-_0
oO0

0

.__ "0

0
-0 © 0
_- _J 0
CU O0 _.l

O9

0
0

o_

0

0

0
Z3

"0
0

t_

0
O3

0

0
t-
h-

II II

mm

0 0
Z5 _-

"0 t'_
0 -0

O0m

0 "0

"0 "0

© 0
._.! __l
cO cO

0

rl ,r-
v

O_i II H

0
0

0

tn

0

0 0
Z5 Z5

"0 "0 _-
0 0 "0

• _ t_
0"_ _

o I-- ,_

0
e-
k-

J. Hihn
JPL
29 of 32

O9

>,,

0

0

EL

0

c-
O
0
"0
E

.-0 >
t'-'_
_.._1

O0
0'- 13_

0
%'1--

E
0

..Q

cO

£b
(D
oO

.J::
13_

/%s%/%s%_%_%_%1

/%#%/%_%f%/%_%_

s%t%1%1%_%_%1%_

c-

¢-
0

OR

%%%%%%%%%%_

%%%%%%%%%%_

%%%%%%%%%%_

I I1
0
0 0 0
.,,_.. 0") CO

c-
°_

0
0

e'}

I I I I I I I
0 0 0 0 0 0 0
I'_ r,.D L.O _ CO 0,1 "_-

(-- o

. m.,,_

_I 0

OJ

_1 o
13._

13_

J. Hihn
JPL
30 of 32

-I:D e-
C_ 09
gO

Z, -o c E
L _ _: _2: _-"

_ I---- u c:_ G_ r-h rY ZD

(1)
CO
G3

._C CO
G_ (1)

D
..O '_

O

c)--
O

:D .._
c) (D

"-"- (1.)

0

__ 0
0 _--

i,I

%I%/%P%l%P%ll _Ii ililiii!!!]_iiliiiiK_-//////_
Iiili!i!lli_!illiiiilK//////_

%%_%%_%%%%

.¢ _"i _" #, _" t

iili!iiil!iliii!ii!ili!iilliii!!i

I

I/_lll/_l/l/l/tlll 1

%_%%%_%%%_%%%%%%%

l-i'#,.. #

I
0
0

I !
0 0
Oa cO

::!!i::iii!!::iiii_iiii_!i_ii!_i_li}i'..'.:i.:."i::_ii_iii::!iii_iii_:

I I I ! ! I I,
0 0 0 0 0 0 0

a6_lua0J_d

IJ0JJ3

O
O_

(N
cO

O
cO

_.O

,q-
.q-

.,q-

O

J. Hihn
JPL

31 of 32

0)
t-
O
03

(.)
c
O

O

J. Hihn
JPL
32 of 32

m

t"3

O CO

c_'-- >', C
t_oo co

C A

> 09 O
c O

_ "r" +...,

r"-_ t")
cO(D X QJ

c-(D _) oo

0"_

•- ×
"_ (D

_ C

m _

"7 ffl
m C

X

c _ o
.-

O
t'_

t_

O
t-

t.¢)
Ckl

I

C)

>., c 12)

.> O_
C

O _ x..
::D x_ (1)

O O

O_ _..

.m

co

c-

C

E

0

>

O

O

E

cO

t--

E

cr

c

c
c_

co

o
t--

c

c
o

c_

c

o

N91-10614

Experiences with Ada in an Embedded System

Robert J. LaBaugh
Martin Marietta Astronautics Group

Space Systems
Denver, Colorado 80201

/7

,7

r

Introduction

This paper describes recent experiences with using Ada in a real time environment. The

application was the control system for an experimental robotic arm. The objectives of

the effort were to experiment with developing embedded applications in Ada -- evaluating

the suitability of the language for the application, and determining the performance of the

system. Additional objectives were to develop a control system based on the NASA/NBS

Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada,

and to experiment with the control laws and how to incorporate them into the NASREM

architecture.

Background

The arm to be controlled has five degrees of freedom -- one degree in each of the shoulder

and elbow joints, and a wrist with roll, pitch, and yaw. An Intel 80386 single board computer

in a Multibus II system was used for the controller. The board contained an 80387 math

coprocessor, two megabytes of RAM, and a single RS-232 serial port. The clock frequency

for the system was 16 MHz. Rather than just use the 80386 as a fast 8086, the 80386 was

operated as a 32 bit processor in the protected mode, which provides for segment sizes of

up to four gigabytes.

The Ada compiler selected was the DDC-I cross compiler for the 80386, which was hosted

on a MicroVAX. This compiler was targeted to a bare machine, so there was no operating

system to either provide services or detract from the performance of the system. Tile

runtime system supplied with the compiler provided all of the services needed to support

the features of the language, including initialization of the hardware, memory management,

R. LaBaugh
Martin Marietta
1 of 19

time management, the Ada tasking model, and interrupt handlers. An operator interface

for the application was implemented using the standard Ada Text_IO package. This package

uses the RS-232 port on the single board computer for the standard input and output of

Text_IO.

Development Approach

The software development system is shown in Figure 1. It consisted of a Rational R1000,

a MicroVAX II, and a PC clone. The systems were connected via Ethernet, which was

used to transfer files between the systems. Initial program development was done oil the

Rational. To facilitate code debug and checkout on the Rational, Ada routines to simulate

the hardware were developed. These were used to replace the low level hardware interface

routines. When the target hardware and compiler became available the source code was

moved to the MicroVAX. Target peculiar modifications were made to the code, such as the

specification of task entries as interrupt handlers and the hardware interface routines. The

code was then compiled and linked on the MicroVAX, and the resulting load module was

downloaded to the PC. The PC served as the controller for the in-circuit emulator, which

was used to load and control the execution of the code in the target system.

Rational
MicroVAX

(80386 Compiler)

PC

ICE Controller

Ethernet

Robot
Control

Elect ronics _ 80386

Multibus II In-Circuit
80386 SBC Emulator

Figure 1. Development System

R. LaBaugh
Martin Marietta
2 of 19

Even though the capabilities of in-circuit emulators are improving, this was a less than

optimal environment for debugging code. Having to move from one terminal to another,

moving files from one system to another, and the limitations on file names on the PC all

hinder code development and checkout. The movement is clearly toward being able to

compile, download, and debug from a terminal on the host development system. There are

some systems which currently allow this, but the targets are connected to the host by an

RS-232 line. The relatively slow download speeds limit the size of programs which can be

effectively developed using these systems.

Ada Features Used

Ada tasks and task rendezvous were used for synchronization and communication between

tasks. Task priorities were established using the priority pragma. An interrupt handler

was coded in Ada to service the timer used to provide the control loop cycle. This was

accomplished using an address clause for a task entry -- which is the technique specified

in the Ada Language Reference Manual for defining interrupt handlers. The LowA_evel_IO

package was used to communicate with the hardware controlling the joints on the arm.

There was one package where machine code insertions were used. This was used to provide

procedures to disable and enable interrupts. These routines were not really needed by the

initial application. They were used to assure safe initialization of the hardware, which

was already guaranteed by the sequencing of the initialization routines. However, these

routines become necessary as more Multibus II features are used. This is because some

logical operations, such as accessing a single Multibus II interconnect space register, require

accesses to multiple hardware ports.

Software Application

NASREM defines a layered, hierarchical control system with common interfaces between

layers. The lowest layer in the hierarchy operates at the highest frequency, with a decreasing

frequency of operation with each higher level. Ada tasks were used to implement the

NASREM layers, with the priority of the tasks decreasing with increasing levels in the

hierarchy. The requirement that the argument to the priority pragma be a static expression

R. LaBaugh
Martin Marietta
3 of 19

preventedthe useof agenericpackagein definingtheNASREMlevels.Itoweverthis wasa

minorinconvenienceastherewasverylittle codeinvolvedin definingthe controlstructure

within a level.

Theinitial applicationconcentratedon the twolowestlevelsof the NASREMarchitecture.

The servolevel readscurrent joint positionsand sendsmotor commandsbasedon the

error betweenthe currentand desiredposition. This levelwasdrivenby a programmable

hardwareclockwhichgenerateda periodicinterrupt. Theprimitive leveldeterminesevenly

spacedpointsbetweendesiredendpointsandperformsthekinematictransformations.The

elementalmovelevelinitially consistedof simplecannedmotion generators,and the task

level simply selectedthe motion to be performed. The robot control function and the

operatorinterfacewereboth runon the sameCPU,with a total of elevenAda tasksin the

application.

The entire applicationwascodedin Ada. Nonon-standardpragmasor specialinterface

routinesto the runtimesystemwereused.In addition,wewereableto effectivelywrite low

levelcodein Ada. This includedinterrupt handlers,hardwareinterfaceroutines,Multibus

II messagepassingroutines,andcontrolof a DMA processor.The hardware,andthe code

generatedby the compiler,providedmorethan adequateperformancefor the system. In

experimentingwith the controllawsthe controlloopcycletime wasvariedbetween10and

50 milliseconds.For mostof that rangeall levelsof the NASREMarchitecturewereable

to completein a singlecycle.Sincethe NASREMarchitectureis setup for approximately

a ten to oneratio in frequencyof operationbetweenlevels,this leavesplentyof roomfor

growth.

Current activity includessplitting the robot control functionfrom the operatorinterface

function and executingthemon two CPUs. The initial interfaceand communicationbe-

tweenthe processorsis via sharedmemory.As analternative,MultibusII messagepassing

will alsobe investigated.This is beingdoneasanexercisein distributing the application.

Itemsof interestarethedifficultyof implementingvariouscommunicationschemesandthe

relativeperformance.

R. LaBaugh
MartinMarietta
4 of 19

LessonsLearned

Most of the thingswhichcouldbeconsideredlessonslearnedaremoreappropriatelyclas-

sifiedascommonsense.Specifically,whilebeingableto usea hostsystemfor initial debug

and test is a usefuldevelopmenttool, it doesnot eliminatethe needfor low level testing

on the target system.This testingis neededto establishthe correctnessof the hardware-

softwareinterfacedefinitions,andto build confidencein both the hardwareandlow level

softwareroutines.Havingasetofprogramstoincrementallycheckoutthe lowlevelfunctions

andinterfacealsoprovidesthe basisfor trouble-shootingasproblemsarise.Suchroutines

wereneededto isolatehardwarefailuresandidentifyimpropersysteminitialization, which

happenedif a specificsequencewasnot followedfor poweringon the electronicsracksand

computers.

Anothermajor lessonlearnedwasthat portability is not automaticwith Ada. Therewere

two specificinstancesof this. The first involveddifferencesin the taskingimplementation

betweenthe Rationalandthe 80386target. Tasksof equalpriority aretime slicedon the

Rational,but this is not the defaultfor the DDC-I runtime system.A task whichwasto

run in the background,andwhichcheckedflagsin an infinite loop, waselaboratedbefore

someof the higherpriority taskswereinitiated. Sincethe task didn't allow for any type

of contextswitch,assoonasit startedexecutingon the 80386it kept controlof the CPU,

preventingthe further elaborationof the system. Insertinga delaystatementinside the

loopfixed theproblem.Theotherexperiencewith non-portableAdacodeinvolveda public

domainmath functionslibrary. The functionsusedby the applicationworkedcorrectlyon

the Rational.Howeveron the80386systemoneof thefunctionsproducederroneousresults

for certaininput values.It wasdiscoveredthat this math packagehad hard codedvalues

for machinespecificparameters.We did not try to determineif this wasthe causeof the

problemasan alternativemath functionslibrary wasavailable.This doespoint out the

needfor extensivetest data,anda testmechanism,for "reusable"Ada packages.

Therestill seemsto bea tremendousresistanceto usingAda languagefeaturesfor embed-

ded,real-timeapplications.Someof this comesfrom "experts"who haveheardAda is not

R. LaBaugh
MartinMarietta
5 of 19

efficientenough,or just cannot support various real-time or "system" functions. This resis-

tance is probably a positive sign. It used to be said that Ada was too inefficient for almost

all applications, not just real-time applications. Unfortunately system specifics, such as a

particular compiler, target, or any operating system involvement, tend to be forgotten or

ignored. There are certainly systems which cannot come close to supporting time critical

applications, but this does not mean all systems are that way. Much more surprising is

the push by some Ada compiler vendors (and, less surprising, real-time kernel vendors) to

promote special, non-Ada runtime systems. This could be seen as an attempt to distinguish

their product, or provide a higher performance system where needed. However, it could

also be viewed as an attempt to circumvent shortcomings in their runtime system imple-

mentation -- which could lead to speculations of what else might be inefficient or poorly

implemented in the system. The use of such systems greatly reduces the portability of the

code and adds another complex system which has to be maintained.

Conclusions

We were able to implement a complex real time system in Ada, and did not have to resort to

circumventing Ada language features or use a special, non-Ada run time system. This was a

result of having hardware, and an Ada compiler and runtime system, with significantly more

performance than was needed by the application. Futhermore, using the Ada tasking system

allowed the initial debug and test of the code to be performed oil tile host development

system, which was more accessable than the target system. This also allowed the debug

and testing to begin before the target system was available. Another advantage of using Ada

tasks and having sufficient performance margin was that it allowed the application to be

implemented primarily by junior engineers. Some guidance was provided on implementing

the interrupt handler and cyclic task execution. Otherwise they were able to use textbook

tasking solutions, such as having tasks to coordinate exclusive access to resources. All of

this indicates that as Ada compilers continue to mature the idea of leveraging of skills can

be extended to the real-time arena.

R. LaBaugh
Martin Marietta
6 of 19

THE VIEWGRAPH MATERIALS

FOR THE

R. LABAUGH PRESENTATION FOLLOW

,i"

m

Z
LU

U.I
e_
X

z

e_

. tNTENTiONAI:LYBLANK

R. LaBaugh
Martin Marietta
9 of 19

R. LaBaugh
Martin Marietta
10 of 19

Z

O

Z

R. LaBaugh
Martin Marietta
11 of 19

W

CO

l--
Z
W

13_
Q
_.I
W
>
I.H
n

n-
W
.._i
_J
0

0 cc
I--

O_ Z

O
0
W

fr"
HJ

X ,.n

0 0
n-- 0
0

o
co

.._1

Z
0
I--

cc

.A

W
Z
n-

"I-

W

_-CC

QoO_

&

_P

CO

I
oO

_Oz
OaZO
130I---or

W

R. LaBaugh
Martin Marietta
12 of 19

R. LaBaugh
MartinMarietta
13of 19

R. LaBaugh
MartinMarietta
14of 19

R. LaBaugh
MartinMarietta
15of 19

R. LaBaugh
MartinMarietta
16of 19

R. LaBaugh
MartinMarietta
17of 19

R. LaBaugh
Martin Marietta
18 of 19

R. LaBaugh
MartinMarietta
19of 19

PANEL #4

TOOLS

D. Drew, Unisys

P. Usavage, Jr, General Electric

J. F. Buser, Software Development Concepts

N91-10615

A Practical Approach to ObJect Based Requirements Analysis

DanieIW. Drew and Michael Bishop

Unisys, Houston Operations Division
600 Gemini Mail Code UO4C

Houston, Tx. 77058-2775
(713)-282-3664

i
/

/

Introduction

In the teaching of mathematics, problem statements are often used to provide exercises which

require the students to apply the knowledge learned. The student must read a paragraph and
determine first what the problem is, then apply the appropriate equation to find the answer. System

development is analogous to solving math problem statements. There is the problem statement

(requirements) which must be understood so that the right equation (design) can be applied for the
solution.

If the study of mathematics emphasizes only the study of equations and how they are derived, the

student will be ill-equipped to use that knowledge in practical applications. Similarly, design

methods which do not have supporting methods for understanding requirements will prove difficult

to use in practical system development.

The use of objects in design methodologies has provided a mechanism whereby software engineers

can take fuller advantage of software engineering principles. However, these concept are just

beginning to reach their full potential as we move them earlier into the lifecycle.

This paper presents an approach, developed at the Unisys Houston Operation Division, which

supports the early ideqtification of objects. This "domain oriented" analysis and development

concept is based on entity relationship modeling and object data flow diagrams. These modeling

techniques, based on the GOOD methodology developed at the Goddard Space Flight Center [4],

support the translation of requirements into objects which represent the real-world problem

domain. The goal is to establish a solid foundation of understanding before design begins, thereby,

giving greater assurance that the system will do what is desired by the customer. The transition from

requirements to object oriented design is also promoted by having requirements described in terms

of objects.

Presented is a five step process by which objects are identified from the requirements to create a

problem definition model. This process involves establishing a base line requirements list from which

an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the
identification of objects from the requirements.

The paper concludes with an example of how semantic modeling may be used to improve the entity-

relationship model and a brief discussion on how this approach might be used in a large scale

development effort.

D. Drew

Unisys
! of 32

A Practical Approach to Object Based Requirements Analysis

1.0 Approach Overview

Following the principles of software engineering promotes a more pragmatic approach for system

development. It requires a change in the overall concepts of how systems are created as well as new

analysis and design methodologies.

1.1 Domain Oriented Development

For a design to be successful, there must be an understanding of the problem it is intended to solve.

All too often problem definition is established in just enough detail to begin design and evolves as

the design evolves. This can lead to unstructured systems which are hard to implement and

expensive to maintain. To eliminate this problem software development can be divided into the

problem and solution domains. The problem domain provides the foundation for all solution

domain activities. A greater discipline is introduced into development giving greater assurance that

the requirements (problem) are understood before a design (solution) is attempted.

Activities included in the problem domain are requirements generation and requirements analysis.

The end product of requirements analysis is a problem definition model. This model becomes the
foundation for all solution domain activities.

Activities included in the solution domain are preliminary design, detail design, code, and test. The

end product is a delivered system which conforms to requirements.

DOMAIN - ORIENTED DEVELOPMENT

PROBLEM DOMAIN

REQUIREMENTS

SOLUTION DOMAIN

DELIVERED SYSTEM

1.2 The Mechanics of Requirements Analysis

Requirement analysis is concerned with establishing what a system is to do. This information must

be documented in a form easily understood by all parties involved in development. The process for
understanding a set of requirements requires an ordered set of steps which clarify origi hal

requirement statements and allow key information to be identified.

D. Drew

Unisys
2 of 32

A Practical Approach to Object Based Requirements Analysis

The remainder of this paper will show in detail an approach which is made up of the following steps:

Step 1: Compile a notebook containing all requirement statements and information from

other sources which might be pertinent to the problem.

Step 2: Rewrite the information from the notebook into concisely stated sentences. This

establishes a baseline requirements l i st (BRL).

Step 3: Develop a static model of the problem from the BRL using entity relationship

modeling. This model will facilitate the identification of objects.

Step 4: Identify the objects and develop a dynamic model of the problem from the entity

relationship model using an object data flow diagram (ODD).

Step 5: Reorganize the BRL so that the statements are grouped by object.

SUPPORT FOR PROPER DESIGN

SOLUTION DOMAIN

A OOO CODE TEST I DELIVERED SYSTEM

/T PROBLEM DOMAIN

- - i .r-DMODEL _'_

BI

E-R ODD

I '

2.0 Step 1 : Compiling an Information Notebook

Complete requirements information is essential in order to create the system the customer really

wants. The purpose of step one is to gather all information which might have any possible bearing
on what the system is to do. The actual process for this step will vary as to the sources of information

available. For entirely new development projects, this is the initial step of requirements generation.

information must be compiled from many different sources. For enhancements to an existing

system, this step is the identification and collection of requirements pertinent to the enhancements.

Information sources would be the existing requirements document, design specifications, and

interviews of current users and maintenance personnel. The end result is to have all the information

available for design gathered in a single reference.

D. Drew

Unisys
3 of 32

A Practical Approach to Object Based Requirements Analysis

Thisapproach was developed for a project which had an existing requirements document. The

document was old and the system had undergone several major revisions. The notebook contained

pages from the requirements document, information from a system closely related to the one being

redesigned, and notes given by experts in the application. The end result was a collection of all
available requirements information which then served as a single reference for analysis and design.

3.0 Step 2: Establishing a Baseline Requirements List

The resultant notebook contains all the information needed to create a model of what the system is
to do. However, there is no meaningful structure. It is very difficult to determine: if the information

is complete, if there is information that is not needed, or how the pieces of information relate to

each other. A good organization of requirements is necessary in order to facilitate the extraction of

entities, relationships, and attributes from the requirements and to develop the dynamic problem

domain definition. The Baseline Requirements List (BRL) provides this needed structure. Each
statement in the notebook is rewritten in a traditional "X shall Y" format where "X" is a noun or

noun phrase and "Y" is some action the noun will perform. Rewriting in this form will force a

greater understanding of each requirement piece. Ambiguous statements and statements which

have no impact on what the system is to do can be easily recognized. Having all requirements stated

as cause and effect also provide a solid platform for system testing.

ORGANIZE REQUIREMENTS INFORMATION

BRL
X SHALL Y

X SHALL Y

X SHALL Y

4.0 Step 3: Developing a Static Problem Definition Model

A static model of the problem is the first component of the problem definition model. Its purpose is
to give structure to the requirements information that will facilitate the identification of the

dynamic properties of the system. A static model represents all the possible entities, with their

attributes and relationships, described by the BRL. The development of a static model based on the

requirements is an information representation problem. Therefore, it is reasonable to borrow

modeling techniques from the DBMS world. Entity relationship modeling has been recommended

by Mike Stark and Ed Seidewitz of the Goddard Space Flight Center [4] and Dr. Charles McKay of the

University of Houston at Clear Lake [2] as an appropriate tool for the structuring of requirements
information.

D. Drew

Unisys
4 of 32

A Practical Approach to Object Based Requirements Analysis

Issues of completeness in requirements can be addressed with this model. Incomplete requirements

appear as dangling entities which have no relationships or as relationships without clearly defined

entities. An entity without relationships may also indicate a requirement statement which does not

belong to the problem. This type of inconsistency is identified and resolved in an iterative process of

reviewing the requirement statements which make up the part of the entity-relationship model in
question until all unusual model structures are resolved.

CREATE THE STATIC MODEL

I
J

xs.A. Yii 11

BRL
E-R MODEL

4.1 Entity-relationship Modeling

The approach promoted by this paper for entity-relationship modeling consists of the entity-
relationship model creation phase, the entity dictionary, which provides entity definitions which will

be used throughout the software lifecycle, and entity-relationship diagrams, which can be used to

graphically depict portions of the entity dictionary. Object data-flow diagrams, which depict the
dynamic problem definition are generated from the entity-relationship model and will be addressed

in section 5.0. The remainder of this section presents in detail how an entity-relationship model is

developed from the BRL.

A common example, a subset of a student registration system, will be presented with most of the

topics in this section and in section 5 in order to help in understanding the concepts. The example

will have the following requirements:

1. The system shall provide the capability to enter and maintain information regarding students.

2. The system shall provide the capability to enter and maintain information regarding the
courses in which students are enrolled.

3. Student information shall include the student's name, age, major and social security number.

° Course information shall include the course's name, department, room number, meeting time
and days, name of the professor teaching the course, a list of students enrolled in the course,

the number of students currently enrolled in the course and the maximum number of students
allowed in the course.

D. Drew

Unisys
5 of 32

A Practical Approach to Object Based Requirements Analysis

S. A course shall be closed when the number of currently enrolled students reaches the

maximum number of students allowed in the course. Otherwise, the course shall be

considered open.

6. Students shall be allowed to enroll in an open course.

7. Students shall not be allowed to enroll in a closed course.

8. The system shall accept registration requests containing the name of a student and the name
of the course in which he/she wishes to enroll.

9. Registration requests shall be processed in order to determi ne whether or not a student may

enroll in the requested course.

4.2 Entity-Relationship Model Creation

The entity-relationship model creation phase consists of extracting entities, attributes and

relationships from the requirements. During this phase, the requirements are assumed to be in the
form of the BRL discussed in section 3.0.

4.2.1 Entity Extraction

Entities will appear as nouns in the requirement statements. Different types of noun phrases reveal

different types of entities [3]. Common nouns, such as "terminal", "student" or "message", name a
class of entities. Mass nouns and units of measure, such as "water", "matter" or "fuel", name a

quality, activity, quantity or substance of the same. Proper nouns and nouns of direct reference, such

as "my terminal", "George" or "syntax error advisory message", name specific instances of an entity
class.

The requirements will not necessarily name all of the entities in the problem domain. Related

entities may have to be found by looking through documentation, talking to people who have some

expertise in the area, etc. For example, suppose that the problem domain consists of a bucket

containing different types of fruit. The requirements may state that the job is to remove the apples

and oranges from the bucket and place them in different piles. The entities in this problem domain,

as shown by the requirements, are the apples, oranges and the bucket. However, there are other

kinds of fruit that have to be considered when removing the apples and oranges (i.e. they must be
discarded). Those other fruits are part of the problem domain and therefore are entities in the

problem domain.

There is another case in which entities are not explicitly named in the requirements. Suppose that
the requirements in the apples and oranges problem also state that someone is to be notified when

a spoiled apple is found in the bucket. This new requirement introduces two new entities, a spoiled
apple and a notification that a spoiled apple has been found. There is a gap in the problem domain

model between the spoiled apple and the notification of the spoiled apple. This gap is filled by an

entity that represents the event that is characterized by finding the spoiled apple. The event entity is

related tothe notification entity in that someone isto be notified in the event that a spoiled apple is
found.

D. Drew

Unisys
6 of 32

A Practical Approach to Object Based Requirements Analysis

Entities are either internal or external. Internal entities have an existence only within the scope of

the problem domain. External entities have an existence outside the scope of the problem domain.

The concept of internal and external entities is easier to consider if the problem domain is thought of
as a "black box." Internal entities cannot be seen outside of the box but external entities can be seen

entering or leaving the box.

In the student registration example, the requirements yield the following entities:

From requirement 1: Student

From requirement 2: Course, Student

From requirement 3: Student

From requirement 4: Department, Professor, Course Roster, Course

From requirement 5: Course, Closed Course, Open Course, Student

From requirement 6: Student, Open Course

From requirement 7" Student, Closed Course

From requirement 8: RegistrationRequest

From requirement 9: Course, Registration Request, Student

The Course Roster in requirement 4 is the list of students enrolled in a course.

4.2.2 Attribute Extraction

Attributes usually appear in the requirements as information concerning entities. The following

attributes are named in the requirements:

Student: Student Name, Age, Major, SS Number

Cou rse: Course Name, Current Size, Max Size, Time,

Days, Room Number, ProfessorkName, DepartmentName

Professor: Professor Name

Department: Department Name

Registration Request: Student Name, Course Name

4.2.3 Relationship Extraction

Relationships appear in the requirements as associations between pairs of entities, entities and

attributes or relationships and attributes. The student registration requirements show the following

relationships:

Requirement 2: Is Enrolled In (l:m)
between Student and Course.

D. Drew

Unisys
7 of 32

A Practical Approach to Object Based Requirements Analysis

Requirement 4: Includes(l:l)/Is A Part Of(1:1)
between Course_na-Cours'e Roster;

Includes (l :m)/Is A Part "-Of(m:1)

between Department and Course, Professor;

Is A List Of(l"rn)/Is A Member Of(m:1)
between Co-urse Roste¥-an_-Student;--

Teaches (l : l)/Is Taught By(l:1)
between Profes-_r and Co--urse.

Requirement 5: Is A Type Of(1:1)
betweenClo-_d Course and Course,

between Open Course and Course;

Is An Instance Of(1:1)

between Course and OpenCourse or ClosedCourse.

Requirement 6: May Enroll In (l:m)
betwe--en Stu_nt and Open Course.

Requirement 7: May Not Enroll In(l:m)
between Student and Closed Course.

Requirement 9: References (l : l) / Is Referenced By (l:m)

between Registration Request and Student,

between RegistrationRequest and Course.

A slash between two relationship names indicates a pair of symmetric, oppositely-directed
relationships. In requirement 4, Course includes Course Roster and conversely, Course Roster is a

part of Course. The mapping class of the relationship is m_--dicated in parentheses.

4.3 Entity Dictionary

The entity dictionary provides a means of describing the entities that are part of the problem

domain. A data structure that is useful for representing the entity dictionary is the frame [4], a form

of knowledge representation developed by Marvin Minsky. A frame is a generalized property list

containing a list of symbols with their associated property names and values [5].

The following is an example of entity entries in the student registration entity dictionary.

Closed Course (Entity)

Rqmt Numbers 5,7

Scope External

Is A Type Of Course

Course (Entity)

Attributes Course Name, Department Name, Room Number, Time, Days,
Profess_ Name, Current St-_-ze,Max Size-"

Rqmt Numbers 2, 4, 5, 9

Scope External

Is Taught_By Professor
Is A Part Of Department

Is An Instance Of OpenCourse, ClosedCourse

D. Drew

Unisys
8 of 32

A Practical Approach to Object Based Requirements Analysis

Is Referenced By RegistrationRequest
Inc-'[udes Course'-" Roster

CourseRoster (Entity)
Rqmt Numbers 4

Scope Internal

Is A Part Of Course

Is A List Of Student

Department (Entity)

Attributes Department Name
Rqmt Numbers4 --

Scope External

Includes Course, Professor

Open Course (Entity)

Rqmt Numbers 5,6

Scope External

Is A Type Of Course

Professor (Entity)

Attributes Professor Name

Rqmt Numbers4

Scope External
Teaches Course

Is A Part Of Department

Registration Request (Entity)
Attribu-tes Student Name, Course Name

Rqmt Numbers 8,-9

Scope Internal

References Student, Course;

Student (Entity)

Attributes Student Name, Age, Major, SS Number
Rqmt Numbers 1,-2, 3, S, 6, 7, 9
Scope External
Is Enrolled In Course

Is A Member Of Course Roster

May Enroll In-Open Cour--se

May Not Enroll In Closed Course

Is R_-feren-ced By-Registratio-n Request

The entity dictionary can be extended to include attributes. The following is an example of some of
the attribute entries in the student registration entity dictionary.

Course Name (Attribute)
Is An Attribute Of Course

Rq-mt --Numbers 4_-'8

Domain String

Days (Attri bute)

Is An Attribute Of Course

Rqmt Numbers4--

D. Drew

Unisys
9 of 32

A Practical Approach to Object Based Requirements Analysis

Domain Character

Values M, T, W, R, F, MWF, TR, MW

StudentAge (Attribute)
Is An Attribute Of Student

Rqmt Numbers3

Domain Integer

Range 16.. 100

Time (Attribute)
Is An Attribute Of Course

Rqmt Numbers4
Domain Character

Length 5

Range 08:00.. 19:00

4.4 Entity-Relationship Diagrams

Entity-relationship diagrams are used to graphically depict a part of the problem domain. Attempts

were made to split the problem domain into parts by using a levelling technique in which the upper

levels in the problem domain consist of "aggregate entities" with the actual problem domain

entities at the lower levels. Unfortunately, there was not much progress in this endeavor and

therefore a single-level description of the problem domain was created. Since a diagram showing

the entire problem domain would be cumbersome, it is better to use the entity dictionary as the

problem domain definition with entity-relationship diagrams being generated to map parts needing
greater clarification. [4].

In the entity-relationship diagram, entities are represented by rectangles and relationships by

diamond-shaped boxes [1]. Attributes are listed next to the rectangle representing the entity. The

arrows indicate the direction of relationships. A double-h _ded arrow indicates the 1:m, m: 1 or m:n
mapping class.

Entity-relationship diagrams can be generated in order to graphically map the problem domain onto

one or more requirements or to show the problem domain from the perspective of a particular

entity. In the latter application, it is useful to state the "order" of the diagram. A first-order entity-

relationship diagram shows the central entity (the entity from whose perspective the problem

domain is being viewed) and its relationships to surrounding entities. A second-order diagram

shows the central entity, its relationships to surrounding entities and the relationships of each of the
surrounding entities to its surrounding entities.

Sample entity-relationship diagrams for the student registration system are shown in appendix A.

5.0 Step 4: Developing a Dynamic Problem Definition Model

The second and concluding component of the problem definition model is the dynamic model of the

problem. It is through this model that data flow and control, as described by the requirements, is

represented. An object data flow diagram (ODD) is used to model the dynamic properties of the
problem [4]. An ODD is very similar to a data flow diagram from Yourdon structured analysis

techniques. The chief difference lies in what the bubbles represent. For an ODD the bubbles are

objects. Since data is encapsulated in objects, there will not be any data stores.

D. Drew

Unisys
!0 of 32

A Practical Approach to Object Based Requirements Analysis

The remainder of this section will present in detail how an ODD is derived from an entity-

relationship model.

CREATE THE DYNAMIC MODEL

ODD

5.1 Identifying Problem Domain Objects

An object is a unique instance of an abstract data type which is a set of data and operations

associated with that data. In order to identify the objects in the problem domain, first find all of the

major abstract data types apparent in the problem domain and use an object to manage each one.

The abstract data types are represented by entities that do not have an Is A Type Of,

Is An Instance Of, Is A List Of or Is A Set Of relationshiptoanotherentity. These

entities are at the-highest level of a--_stracti0-n fo-r ent_es of a particular type. In the student

registration problem, those entities are Course, Department, Professor, Registration Request and

Student. Each one of these entity classes will have an object to manage it. These candidate objects

are Course Folder, Department Folder, Professor Folder, Registration and Student Folder.

The next step is tofind all entity classes associated through the Is A Type Of, Is A List Of or

Is A Set Of relationship with the entity classes found in the first step. In the example,

Open Course and Closed Course are associated with Course through the Is A Type Of

relatio--nship and Course R--oster is associated with Student via the Is A List-" O-t"relatio-nship. The

following objects and associated entities can be identified thus far:

CourseFolder: Course, OpenCourse, CiosedCourse

Department Folder: Department

Professor Folder: Professor

Registration: Registration Request

Student Folder: Student, Course Roster

D. Drew

Unisys
11 of 32

A Practical Approach to Object Based Requirements Analysis

The entity classes listed for each object represent the abstract data types provided by that object. At

this point, it is possible to determine the set of requirements satisfied by each object. This is done by

consulting the entity dictionary and finding the requirement statement numbers for each of the

entities associated with each object. Applying this process to the five objects in the student

registration system shows the requirements satisfied by each object:

Course Folder: Requirements 2, 4, 5, 6, 7 and 9

DepartmentFolder: Requirement 4

Professor Folder: Requirement 4

Registration: Requirements 8 and g

Student Folder: Requirements 1,2, 3, 4, 5, 6, 7 and 9

The requirement sets for each object are not disjoint. The shared requirements (numbers 2, 4, 5, 6, 7

and 9 in our example) describe the relationships between entities of different types. These

relationships, in turn, describe the interfaces between different objects.

In order to complete the definition of the problem domain objects, find all relationships between

entities of different types and add each member of the corresponding entity pairs to the appropriate

object. For example, because of the relationship "Student Is Enrolled In Course", there is an

interaction between the Student Folder and Course Folder objects. To show this interaction, add

the entity Student to the Course Folder object and Course to Student Folder. One exception to

this procedure occurs when one member of the entity pair is a generalized entity class. An example

of this is the relationship "Student May Enroll InOpen Course". Since "Open Course

Is A Type Of Course", add Course to Student Folder instead of Open Course. This procedure
re'_lt-_ n the-following set of objects and associa_'d entities:

Course Folder: Course, Open Course, Closed Course, Course Roster, Student,

Department, P-_ofessor, Registra-_ion Request --

Department Folder: Department, Course, Professor

Professor Folder: Professor, Department, Course

Registration: Registration Request, Student, CourseStudent, Course Roster,

Course, RegistrationRequest

Having identified the problem domain objects and their associated entities, an object data-flow

diagram can be generated.

5.2 Generating Object Data-Flow Diagrams

Generating an object data-flow diagram based on a set of problem domain objects is simply a matter

of finding entities common to pairs of objects. For example, the entities that Course Folder and
Student Folder have in common are Student, Course Roster and Course. Those co-mmon entities

represe_-interfaces between Course Folder and StucTent Folder. On the object data-flow

diagram, the interfaces are represente-d by drawing a line b'etween the two rectangles representing

the objects and labeling the line with the names of the common entities. The object data-flow

diagram representing the objects from section 5.1 is in Appendix B.

D. Drew

Unisys
12 of 32

A Practical Approach to Object Based Requirements Analysis

The problem domain objects identified can be formally documented (in terms of the entities used

and produced) by adding them to the entity dictionary:

Course Folder (Object)

Rqmt Numbers 2, 4, 5, 6, 7, 9

Uses Department, CourseRoster, Student, RegistrationRequest, Professor
Produces Course

Department Folder (Object)

Rqmt Numbers4
U ses PTofessor, Course

Produces Department

Professor Folder (Object)

Rqmt Numbers4

Uses Department, Course
Produces Professor

Registration (Object)

Rqmt Numbers 8,9
Uses Student, Course

Produces RegistrationRequest

Student Folder (Object)

Rqmt Numbers 1,2, 3, 4, 5, 6, 7,9

Uses Course, Registration Request
Produces Student, Course Roster

5.3 Object Names

The names given to objects play a key role in the development and understanding of the ODD.

Naming objects is possibly the most difficult task in requirements analysis. The objects supply the

framework for the representation of information and the eventual design. Therefore, their names

must convey a concise meaning of the abstraction.

Object names are always nouns or noun phrases. This facilitates using the objects as a structure

which can be used to explain action. It should be obvious from the name what real world object is

represented. It is very difficult if not impossible to pick object names which do not bias design

toward a particular direction. Therefore, this fact must be understood and preconceived notions

must be addressed when a name is chosen. The name must be broad enough to encompass all the

details associated with an object. Operations found within an object should not contradict the

implied meaning of the object's name.

6.0 Step 5: Reorganization of the BRL

The entity-relationship model and ODD provide a complete problem definition model. Furthermore,

the ODD serves as a platform to launch into an object oriented design. The last step for the problem

domain segment of development is to go back and group the statements in the BRL under headings

which represent the objects they support.

D. Drew

Unisys
13 of 32

A Practical Approach to Object Based Requirements Analysis

The objects are the main organizational structure for the system. Re-grouping the requirements will

help the designers to find the additional detail needed to continue development. It will help the

testers create test procedures aligned along object boundaries. It will simplify the traceability of

requirements to design for the designer, tester, and maintainer. In short, having the requirements

document reflect the structure of the emerging design will provide a high level of continuity

throughout the system's lifecycle.

7.0 Enhancements to Problem Definition Modeling

Requirements analysis is a specific application of an information representation problem. As current

modeling techniques evolve, it is reasonable to expect improvements in the approach taken in

problem definition modeling. Semantic data models are currently being introduced for use in

modeling data bases. They provide a richer medium for the representation of information. This

section describes how semantic modeling can be used to enhance the entity relationship model.

Semantic data models allow designers to represent the entities of interest in an application in a way

that more closely resembles the view the user has of these entities [6]. Semantic data models provide

abstraction constructs that can be used to capture some of the meaning of the user application.

The semantic entity-relationship model introduced in this section features the abstraction constructs

provided by the semantic and hyper-semantic [6] data models and allows the analyst to further

define the problem by stating the meaning of relationships between entities in the problem domain.

7.1 Modeling Primitives

Modeling primitives are atomic relationships whose meanings cannot be defined as a composition of

other meanings. They form the basis on which other relationships can be defined. Modeling

primitives can be grouped into relationship classes which correspond to the abstraction constructs of

the hyper-semantic data model. The modeling constructs of the hyper-semantic data model and

their associated relationship names include [6]

Generalization: Similar entities are abstracted into a higher level entity-class. Relationship:
Is A Type Of.

Classification: Specific instances are considered as a higher level entity-class. Relationship:
Is An Instance Of.

Aggregation: An entity is related to the components that make it up. Relationship:
Includes/Is A Part Of.

Set Membership: Several entities are considered as a higher level set entity-class.Relationships:
Is A Set Of/Is A Member Of.

List Membership: Several entities are considered as a higher level list entity-class.
Relationships:Is A List Of/Is A Member Of.

Constraint: A restriction is placed on some aspect of an entity or relationship. Relationship:
Is A Constraint On.

D. Drew

Unisys
14 of 32

A Practical Approach to Object Based Requirements Analysis

Heuristic: An information derivation mechanism is attached. Relationship:

Is A Heuristic On.

Synchronous Temporal: Specific entities are related by synchronous characteristics and

considered as a higher-level entity-class. Relationships: Is A Predecessor Of/
Is A Successor Of.

Asynchronous Temporal Specific entities are related by asynchronous characteristics and

considered as a higher-level entity-class. Relationshi ps: initiates/IslnitiatedBy.

Equivalence: Specific instances of an entity-class are asserted to be equivalent. Relationships:

IsEquivalentTo.

The slash within the relationship names indicates two oppositely-directed relationships.

7.2 Semantic Relationship Definition

The semantic entity-relationship model provides a construct that allows the analyst to define the

meaning of a relationship. This construct can be used to define a relationship in terms of other

relationships and modeling primitives and to define the restriction class of a relationship.

A relationship between entity classes A and B is restricted if instances of type A may only be related

to certain instances of type B based on a condition. The relationship is existence restricted if

instances of type A may only to be related to those instances of type B for which they depend on

their existence [7].

In order to walk through a short example of a relationship definition, consider the Is Enrolled In

relationship between Student and Course. The objective is to state what is meant by t--he phraseT'a

student is enrolled in a course." The course roster may be used in order to determine if a particular

student is enrolled in a particular course. Remember from section 4.2 that a course roster is a list of

students enrolled in a course. Therefore, a student is enrolled in a course if the student is on the

course roster. The relationship is written in the following form using the semantic relationship

deft nition construct:

entity class Course, Student, Course Roster;

relationshipls Enrolled In(enti ty instance, entity instance);

Student Is Enrolled In Course if
CRIb- An tnst--ance Of Course Roster and

Course Includes CR and
Student Is A Member Of CR;

The relationship statement declares Is Enrolled In as a relationship between two entity instances.

Therefore, the definition of the Is Enr--olled In-_lationship between Student and Course is
concerned with an instance of Stud--ent and a-n'instance of Course.

D. Drew

Unisys
15 of 32

A Practical Approach to Object Based Requirements Analysis

Thefirstclausewithintherelationshipdefinition,"CRIs An Instance Of Course Roster",
defines an entity CR which is an instance of entity class Course Roster. T--hesecond c_use, "Course

Includes CR", associates CR with the particular instance of Course with which the relationship is

invoked. The third clause states that the instance of Student with which the relationship is invoked

must be a member of the course roster CR in order for the Is Enrolled In relationship to be
satisfied.

The relationship is invoked by replacing Student and Course with appropriate instances, for example

"George Is Enrolled In Physics". In this invocation of the relationship, CR is the course roster for

Physics and the relationship is satisfied if George is on that roster.

The semantic relationship definition construct can be thought of as "infix Prolog". In fact, it is rather

easy to convert the above example into Prolog'

is enrolled in (Student, Course):-

is an instance of(CR, Course Roster),

includes (Course, CR),

is a member of (Student, CR).

If one could "code" the modeling primitives in Prolog and generate the appropriate Prolog

declarations, it would be possible to execute a problem domain model. This may be useful in
ensuring that the problem domain model is correct before going on to create objects and initiate

design. This process is analogous to executing a design before implementation.

8.0 Considerations For Large Projects

This paper is based on a small project projected to be only 10,000 lines of code. An important

question to ask is, "How will this approach support the development of a large system of 500,000

lines or greater?"

The basic approach is good for any size project. What complicates larger systems is the large number

of requirements to be considered. It may not be practical or even possible to examine all the

requirements at the same time as was done for this project.

To resolve this problem, approach the requirements as layers of abstraction. Read through the

document and extract those statements which define a very high level view of the system. Apply the

approach presented in this paper to produce a problem definition model for this high level

abstraction. Now begin an iterative process of stripping off layers of detail for each object identified

in the previous level of abstraction and create a problem definition model. Use the approach

presented in this paper for each iteration.

As each layer of abstraction is added to the model, check the preceding layer to assure that the

objects and interfaces already established still hold true. If there are inconsistencies, make the

necessary adjustments and continue with the process.

D. Drew

Unisys
16 of 32

A Practical Approach to Object Based Requirements Analysis

Summary

Students who spend all their time understanding math equations without applying them to problem

statements will be ill-equipped to solve real world problems. System developers who possess the

latest techniques in system design but have inadequate approaches to requirements analysis are

destined to create wonderful designs which solve the wrong problem. The approach in this paper is

a beginning to the application of modern analysis techniques rooted in the theoretical foundation

of software engineering. A pragmatic approach allows for better conformance to those
requirements in design. A model based on objects permits closer adherence to software

engineering principles earlier in the lifecycle. It is not always easy to see objects in the requirements.

Use of the entity-relationship model eases this problem by structuring the information in a form

more conducive to object recognition.

D. Drew

Unisys
17 of 32

A Practical Approach to Object Based Requirements Analysis

AppendixA. Sample Entity Relationship Diagrams

E-R DIAGRAM FOR STUDENT REGISTRATION REQUIREMENT 4

Depart- J
ment

1 II 1

D. Drew

Unisys
18 of 32

Student
List

A Practical Approach to Object Based Requirements Analysis

First order diagram for entity Student

Student Name

Age
Major
SS Number

Student

i Student
List

_1 Registra-tion

Request

Enroll ._

Course

I Open
Course

Closed
Course

D. Drew
Unisys
19 of 32

A Practical APP _u°

Second order diagram for entitV student

student Name student
Age
Majo r -_
SS _.Number

er Of

student
List

D. Drew
Unisys
20 of 32

A Practical Approach to Object Based Requirements Analysis

Appendix B. Sample Object Data-Flow Diagram

Object data-flow diagram for student registration system

Depart-
ment

Folder

&

Professor,
Department

W

Professor
Folder

Course, Department

I Course I
_" Folder

Course, Professor l

Student List

Student IStudenCC°urse

Folder I_

J
Student, Course,
Registration
Request

Student,
Course,
Registration Request

Registra-
tion

D. Drew

Unisys
21 of 32

A Practical Approach to Object Based Requirements Analysis

References

[1] Chen, Peter P., "The Entity-Relationship Model - Toward a Unified View of Data", ACM

Transactions on Database Systems, Vol. 1, No. 1, March 1976, pp. 9-36.

[z] McKay, Charles W., "A Perspective and Overview of Software Engineering", a seminar

sponsored by the Software Engineering Research Center at the University of Houston at Clear
Lake.

[3] Booth, Grady, Software Engineering With Ada, Second Edition, The Benjamin/Cummings

Publishing Company, Inc., 1987.

[41 Stark, Mike and Seidewitz, Ed, "Towards A General Object-Oriented Ada Lifecycle", Goddard

Space Flight Center, Greenbelt, Md., March 1987.

[5] Winston, Patrick H. and Horn, Berthold K. P., Lisp, Addison-Wesley Publishing Company, 1981.

[6] Potter, Walter D. and Trueblood, Robert P., "Traditional, Semantic, and Hyper-Semantic

Approaches to Data Modeling", Computer, June 1988, pp. 53-63.

[7] Webre, Neil W., "An Extended Entity-Relationship Model And Its Use On A Defense Project",

Entity-Relationship Approach To Information Modeling And Analysis, ed by Peter P. Chen,

Elsevier Science Publishing Company, 1983.

D, Drew

Unisys
22 of 32

A Practical Approach to Object Based Requirements Analysis

Biographical Sketch

Daniel Drew has worked 13 years in the computer industry. After graduating with a B.S. degree in

Computer Science from Texas A&M University, he spent 10 years developing Supervisory, Control,

and Data Acquisition (SCADA) systems for oil pipeline control and automated oil field production.

He has spent the last three years in Aerospace as a system designer and currently as section

supervisor at the Unisys, Houston Operations Division. The section he supervises is working the first

Ada pilot project attempted at the Unisys Houston site. Mr. Drew is a member of the IEEE Computer

Society, Clear Lake Chapter of SigAda, and National SigAda.

Michael Bishop has worked as a programmer and systems analyst in the aerospace industry for over

four years. Mr Bishop is currently employed at the Unisys Houston Operation Division where he has
been developing an entity-relationship methodology suitable for a wide range of applications as

part of an Ada pilot project. Previously, Mr. Bishop worked at Ford Aerospace and Unisys on the

MAST project, a database application concerned with the management of Space Shuttle downlink

and uplink data. Mr. Bishop received his bachelor's degree in Computer Science in 1984 from the

University of Houston and is currently pursuing a master's degree at the University of Houston's Clear
Lake campus.

D. Drew

Unisys
23 of 32

THE VIEWGRAPH MATERIALS

FOR THE

D. DREW PRESENTATION FOLLOW

P_I_E ,_,_ IN[EN]IONAi'iy BLANK

O-
re

a.. O' _
a., ,-,-, >.

,_ ,_,_,Z

eeU
n_ uJ

is_l
ee

,--I
I,bl
m

Z

Z
,,::[

8

IM

0

D. Drew
Unisys
27 of 32

el-,.(o

Z_
O U

<
Oz

Z

o

,.J

<
Z
.<

<

0

.

.Q

E

o
Z

D. Drew
Unisys
28 of 32

Z
ill

Z
ul

0 _-

uJ

m

_a
ee
ua
N
m

0

llUlllllllllllm
lllllBllllU111111-

t
U "l':.

O.
ua

k-

re
m

u_

..J

<
m

k-
Z
ua

W

Z
<
e

<

ua

m >.

0 _9
Z Z
o

u
,< <
Z n,,,,
m

:E
<
X
ul

IJJ

0
I_k

e

a
I,,IJ
I-,
<
:E
0
I--

<[
Z
.<

<

N
0

o
Z

D. Drew

Unisys
29 of 32

D. Drew

Unisys
30 of 32

1

I=-
Z
1

w
l

Z

r_

0

E

0
Z

(n

<(
z
<(

if)
<

G
.i

o

U
i11

Z_ _ z
II

,,
0 u v_ _u

"' Z _'-' u.I !--
- o 0 0 uJ
_Oo _. I-- -- 0

uu _ '" - z

U

m

0
w >

<: z <
<I: 0 _-
r_ _ i-. z

m

0 z u _-
m

0 u. _n
<

• • • •

E

0
Z

D. Drew
Unisys
31 of 32

Z
0
m

_ EL1

Z_ Z
_ 0

<
I-

_ Z
MJ

I,.U

_" O=

"-- I=U
I-

=_ 0
>. :E c_ < o--- IJJ

Z m
_' 0 _ z

Z _ I--
_ _.. _r----

Z Z _ uu
,_,_, _ ,i,

==_ Z
,I, uu

LU Z =__" _ 0
0 '-'-' --

u't _ uu

_<I: z "

-_ _ 0m
0 ,-- _ _-

_ 0
a. U u

_o

>,
<
Z
<

m

0

.D

E

0
Z

D. Drew

Unisys
32 of 32

• • • •

N91 -10616

A Modernized PDL Approach
for Ada Software

Development
Paul Usavage Jr.

(215) 354-3165

r'"

M&DSO / Ada Core Team

Valley Forge, PA

ABSTRACT

The desire to integrate newly available, graphically--oriented CASE (Computer Aided

Software Engineering) tools with existing software design approaches is changing the

way PDL is used for large system development. In the approach documented here,

Software Engineers use graphics tools to model the problem and to describe high level

software design in diagrams. An Ada--based PDL is used to document low level design.

Some results are provided along with an analysis for each of three smaller GE Ada

development projects that utilized variations on this approach. Finally some

considerations are identified for larger scale implementation.

BACKGROUND

In 1987, the Ada Core Team was formed within GE's Military & Data Systems Operation to

apply advanced technologies including the Ada language to the development of large

satellite ground systems that form our business base. GE M&DSO has been producing

real time satellite ground stations for 15 years with a strong, established methodology.

The addition of graphics workstations and graphics tools to this methodology is just a

natural evolution of these methods. The techniques proposed here have grown out of

GE's methodology and been refined through use on various Ada projects and IR&D work.

The information in this paper is based primarily on the results of these efforts.

P. Usavage, Jr.
GE
1 of 23

INTRODUCTION

The availability of automated graphic tools sup-

porting structured analysis and structured design

techniques, and the need for major improvements

in productivity and quality are causing software or-

ganizations to rethink their software engineering

methodologies. PDL (Program Design Language
or Process Description Language) is the most

commonly used design tool in many organizations.
As a result there is a wide base of experience in

PDL as a descriptive medium.

Yet, when an organization wants to add CASE

(Computer Aided Software Engineering) tools to

their existing methodology, it often is unclear what

role PDL should play. Are PDL and graphic

CASE tools redundant, or can they both contrib-

ute to modern software design practices? And

what about the practice of coding some Ada con-

structs (notably package specifications) during

detailed an even preliminary design? Does this
narrow the scope of PDL's usefulness?

This paper is intended to document our analysis

of the most effective tools for each portion of the

software design cycle. Each tool, graphics, PDL,
and Ada source code, has characteristics that

make it useful to apply to part of the design prob-

lem. PDL has been used in the past for the

representation of many design aspects. Today
there are areas where PDL is best suited, and ar-

eas where other tools are better suited than PDL.

By way of further introduction, let us examine the

traditional design approach and use of PDL.

TRADITIONAL APPROACH TO

SOFTWARE DESIGN

Traditional documentation of a program with PDL

involves two parts. The primary part is the proc-

ess description, which is a description of the
o

implementation or algorithm used in a program,
subprogram, process, function or procedure. The

second part is the prologue, which is usually pre-

sent to support the process description by

explaining input/output data items and local vari-

ables. The prologue often provides references to

the design or requirements documentation, and

usually includes information and format necessary
to an automated PDL processor. Sometimes the

term PDL is used to refer to just the process de-

scription, and others it is used to refer to the

prologue as well. In this paper PDL will be used

to refer either to the process description and to
tile language used for process description.

P. Usavage, Jr.
GE
2 of 23

Software Design Phases

The evolution of a software design occurs in dis-

tinct steps over several project phases. During the

Software Requirements Analysis phase, a soft-

ware system is partitioned into Computer Software

Configuration Items (CSCIs), and all software sys-

tem requirements are allocated among these
CSCIs.

During the Preliminary Design phase, a high

level design is conceived for each CSCI sufficient

to satisfy its allocated requirements. This design is

described in English in a continuous, flowing,

'easy to read' paragraph format. Software hierar-

chy charts are usually prepared next for the

design review. Database and file format designs
are initiated during this phase to reflect attributes

of the preliminary design.

The software design process continues during the

Detailed Design phase with the generation of pre-

liminary software source modules for each design
component. The method to be used in these

modules is described using a PDL process descrip-

tion. The first 'cut' at this description would

likely be at a high level of abstraction (showing

fewer details). Iterative refinements are then

made of the PDL process description, assisted

somewhat by the use of structure charts. The de-
sign is refined by adding more detail on how the

module's functionality is to be provided. This
lengthens the process description, and separate,
subordinate modules are then created to break

out cohesive elements of this process description.

A PDL processor is used during this activity to

check for syntax errors and to create calling trees

and object/variable cross-references for analysis
use.

The end of the PDL refinement process is
reached when two criteria are felt to be satisfied.

The first requires that the process descriptions
should be detailed enough that the module can be

coded by someone familiar with the technology

but unfamiliar with the design. The second crite-

ria requires that process descriptions must be of a

suitable length (between 1 and 2 printed pages) to

result in reasonably sized code modules. Consis-

tency and quality are encouraged by the

establishment of PDL standards, by the informal

sharing of sample PDL, and by peer review or

structured walk--through of the PDL processor
printed output.

The Coding phase implements the design. The
source code is written into the same modules al-

ready containing tile prologues and PDL process
descriptions. In some cases the source code is

interspersedthroughoutthe PDL in a stylethat
explainsa stepof conceptualprocessingwitha
blockof PDL,thenimplementsit withablockof
sourcecode. In othercasesthe entireprocess
descriptionis kept intactat thebeginningof the
module,followedbytheentiresourcecode. The
formermakesit easierto matchPDL to source
code,whilethe latterallowsthe PDL (andthe
sourcecode)to bebetterseenandunderstoodin
whole.

Benefits Of Traditional Approach

Our Software Development section has enjoyed

steady productivity gains since this PDL methodol-

ogy was adopted. PDL usage has resulted in

higher quality and greater productivity than previ-

ous development methods (which made use of,

among other things, English prose descriptions

and flowcharts). Of course, many factors are at

work in increasing productivity including the avail-

ability of more and better hardware, but at least

some of this improvement can be attributed to the

use of a vigorous, robust, well-known and well-

followed methodology. The use of PDL

contributes to quality and productivity in the fol-

lowing ways:

1) Creation and maintenance of documen-

tation is easier when employing the same

tools (e.g., computer terminals, editors)

used in writing the source code.

2) Design descriptions are more complete,

rigorous, detailed, and more standard-
ized.

3) Design walkthroughs may be used more
readily to reduce the number of design
errors.

4) Some aspects of the design (e.g., syn-
tax, keyword balancing, call trees,

indexing of references! may be checked

automatically.

5) Deliverable documentation may be pro-

duced automatically from source code

containing PDL.

6) Fewer errors are made when represent-

ing actual software implementation due

to the proximity of PDL and source
code.

7) Less effort must be spent on explanatory
comments when the PDL is located with
the source code.

Disadvantages Of Traditional Approach

Usage of this approach has also shown some dis-
advantages. Some of these are:

1) The 'easy to read' English prose used in

preliminary design documentation is

hard to write in a way that is free from

ambiguity.

2) The PDL documentation for a large sys-
tem is copious and very low--level in

detail; it can be very difficult to find the
PDL associated with a given aspect of

system behavior.

3) PDL does not support well the more

formalized structured approaches to par-

titioning (e.g., analyzing coupling and

cohesion) and automated checking, es-

pecially when experts try to review the

partitioning decisions of others or when

automated tools are used to verify the

design.

4) PDL approaches traditionally have ne-

glected the data part of a design

Advantages of Newer Graphic Tools

CASE tools now available automate graphically--

oriented regimens in system analysis and software
design. These tools include support for such ap-

proaches as Data Flow and Control Flow

Diagrams, Structure Charts, Entity Relationship

Diagrams, Object Dependency Diagrams, Object

Interrelationship Diagrams, Data Dictionaries and

integrated tool databases. GE has used the

teamwork _ tool from Cadre Technologies, Inc.

for the studies described in this paper.

The automated graphic tool approach to Struc-

tured Analysis and Structured Design has many

commonly recognized benefits:

1) Communication via graphics seems to

occur at a much higher information

bandwidth, using visible relationships

and psychological cues to more quickly

attain a high level of reader understand-

ing.

2) Graphics seem to provide better support

in decomposing or partitioning a soft-

ware problem or design, and in

examining alternatives and reviewing the
results.

3) Production of graphics for formal pres-
entations and reviews is automated.

P. Usavage, Jr.
GE
3 of 23

4) Tools can often assist in the storage,

control of and access to information by
design teams.

5) Tools can provide higher levels of auto-

mated balance and consistency checking

by including a data dictionary, and in

some cases can automate design verifica-
tion.

6) Graphic tools seem to better represent

system level behavior, interface design,
and data design.

Disadvantages of Graphical Tools

Graphics CASE tools also have their disadvan-

tages, including:

other approaches, including the classical waterfall

approach and the default cycle documented in
DoD--STD--2167A. Familiar activities occur

during the phases but more effective tools, refine-

ment techniques and documentation media are
used.

The basic approach uses graphics at the higher
levels of abstraction and PDL at lower levels.

This documented approachsupports the use of the

Ada language well. A non-Ada version of the

Software Development Plan is planned to properly

exploit this same methodology on non-Ada pro-
jects. The current Plan version makes use of

object--oriented terms and methods. However, it

is intended to support either object--oriented or

functional decomposition of a system, or an ap-
proach that hybridizes the two.

1)

2)

3)

4)

5)

6)

Graphics are generally less effective than

PDL when dealing with larger quantities
of low level details (for example, flow

charts become considerably less attrac-
tive when used to document low level

details of very large programs)

Newer, more complicated approaches
may require much more extensive tool

and methodology training to be success-
ful.

Graphics CASE tools can involve a sub-
stantial additional investment in both

hardware and sottware.

Development schedules must be adjusted

to reflect additional time spent on the

front-end design.

It is very difficult to prove (e.g., to cus-

tomer or business management) that the

additional time and money spent up

front results in cost savings later.

Human nature sometimes leads people
to believe that the tool will do the work

for you; really it just helps to represent
work you do yourself.

PROPOSED METHODOLOGY

The following methodology, documented in our

Software Development Plan, has been synthesised

from our existing methodology and from proposals

by many authorities. It has been adapted to com-

plement our existing approach and is recommend

by our group for GE's large development con-
tracts. The phases here are much the same as in

P. Usavage, Jr.
GE

4 of 23

Approach By Phase

The Software Requirements Analysis activity

uses a basic Structured Analysis approach (as de-
scribed by Yourdon & DeMarco, McMenamin &

Palmer, Ward & Meller, Harley & Pirbhai, and
others) including the use of Data Flow and Con-

trol Flow Diagrams and a Data Dictionary for
Essential and Incarnation models (see the refer-

ences). The purpose of this is to model the
problem in more detail in order to understand it.

This is done first in a way that removes the con-
sideration of technology from the statement of the

problem solution, and then adds it back into con-

sideration. The results of this analysis, in the

form of Data Flow Diagrams, are input to the next
phase of software development.

Preliminary Design involves the identification of

Configuration Software Components (CSCs) from

the Data Flow Diagrams. These may be high--
level objects and operations identified in an

Object--Oriented approach. Object Dependency

Diagrams are produced for the identified objects.

Interfaces between CSCs (and CSCIs if not done

during Requirements Analysis) are defined, then

depicted using package specifications. The pack-

age specifications are coded in Ada, showing the

Ada declaration of each resource (mostly types

and subprograms) exported from the package

specification, along with Ada with clauses showing
necessary dependencies. Compiling these inter-

face specifications checks for consistency and
makes a firmer foundation for further breakdown

of development work. High--Level executive

CSCs are described with PDL at this stage to show
the major elements of control. The PDL for the

executives would include the creation of their dec-

larations in package specifications or as

stand-alone subprograms, filong with Ada with

clausesfor theirdependencies.ThePDLconsists
of structured language process descriptions based
on the Ada executable statements for iteration,

loops, and conditionals. No attempt is made to

compile the executives at this point, the purpose is
to describe control dependencies inherent in the

design. This PDL may in fact be contained solely
within the CASE tool and not within a source

code member at all. This makes it instantly acces-

sible when documenting and refining later stages

of the design.

The design process continues during the Detailed

Design phase as structure charts are generated for
each CSC. These show the architectural details

involved in implementing the CSC. Computer

Software Units (CSUs) are identified. These may

be lower level objects in an object--oriented sys-

tem. The implementation of individual CSUs are

described in PDL process descriptions within the

CASE tool graphics environment. This gives the

programmer a better sense of partitioning and of
the overall system structure than does writing the

PDL into a disconnected source file. No compila-

tion is attempted of these process descriptions.
They are based on the Ada language syntax for

universality of understanding, not for compilability

at this stage. However, new interfaces derived at

this detailed level of design (i.e., more package

specifications) are coded in Ada and checked

with the compiler. These package specifications

declare all types and data structures necessary to

components external to the package specification.

Also, within the package bodies, internal types

and major internal data structures are coded in

Ada and compiled. This helps to firm the data

design and package dependencies. This is a ma-

jor design component that is best described and

checked with the Ada language and compiler it-
self.

The Coding phase that follows detailed design in-
volves transfering the PDL from the CASE tool

into existing and new Ada source modules, then

writing Ada code for the design represented in the

PDL process descriptions.

TRIAL PROJECTS

A number of GE Ada projects have been under-

taken using variations on the traditional and

proposed methodologies. The following projects

have been selected to present some variety in ap-

proaches to PDL. No hard metrics are available

for these projects to give insight into the contribu-

tion of methodology components, such as the
number of errors created and found during a

phase, or even created but not discovered. In-
stead, project team members were interviewed

about problems, rework and errors that occurred.

Their comments were then analyzed for apparent

relation to the choice of methodology.

The projects described here are IR&D projects

that have occurred over the last two years at GE.

They appear here in chronological order, and in

fact show an evolution in methodology over this

time period. Methodology refinement was not the

primary intention of these IR&Ds, each one was

instead performed with what seemed the best ap-

proach to those directing the efforts at the time.

Methodologies of later projects were of course
tuned to benefit from the lessons of the earlier

ones. Most participants were first time Ada pro-

grammers, although each project (after the first)

had at least one person assisting during coding

that had benefitted from some experience on a

previous phase. The experienced people were not
usually available during the design phase, how-

ever.

Project I

One study in Ada software development involved

the redesign and re-implementation of a predic-

tive mathematical simulator. The project resulted

in approximately 8000 compiled Ada statements

(counted by semicolons, not including blank or

commented lines). Automated CASE tools were

not available during the study. Diagrams were

produced using a PC-based general-purpose

drawing tool. The Ada compiler itself was used to
check the PDL for syntax. PDL consisted of

coded and compiled Ada block constructs (e.g.
loops, conditionals), compiled type and variable

declarations, and Ada comments instead of pro-

cedural (sequential) statements.

During Preliminary Design, narrative English

specifications were produced according to more
traditional development methodology. Object/

Package Dependency Diagrams and Control Flow

Diagrams were drawn. These were presented dur-

ing the Preliminary Design Review (held at the

end of the Preliminary Design Phase), but effort

was not spent to maintain these diagrams for use

during Detailed Design. High-level objects and

procedures were identified and package specifica-
tions coded (but not compiled--the development

environment was not available at the time).

During Detailed Design, the Ada package specifi-
cations were entered and compiled. Any
interface errors detected then were corrected.

Package bodies, subprograms and most types and

P. Usavage, Jr.
GE
5 of 23

variables were declared in compiled Ada within
the code modules.

In the Coding phase, the unimplemented (com-

mented) portions of the compiled PDL bodies

were coded and the components integrated and

debugged.

The study was a quite a success as far as Ada soft-

ware development was concerned. However, an

analysis is possible of problems that arose during

the study for possible effects of the choice of

methodology. For instance, there was a wide vari-

ation among the six programmers participating in

the study in the style and composition of the com-

piled Ada PDL. Some felt very comfortable

during Detailed Design writing almost complete

Ada code and very few PDL comments. Some

felt very uncomfortable with the Ada syntax and

compiler and wrote mostly comments and few

compiled types/objects/block constructs. This
sometimes resulted in inconsistent levels of ab-

straction of the PDL design description.

In general, the project tended to achieve different

levels of abstraction and maturity at different
times. It took longer for a programmer to write

PDL that was mostly code. It took less time to

write PDL that was mostly comments, but more

time to write the source code in the next phase.

Management misunderstandings resulted from this

when attempting to assess the progress of the ef-

fort at a given point in time.

The problem with different styles of PDL and dif-

ferent PDL/code contents appears to be more

common with projects that use an Ada compiler
to check PDL. This also seems to occur more

frequently when there is less experience with Ada

and the PDL approach. One remedy for this is
more and better training. Another is not to use

the Ada compiler to check PDL syntax--and the

problem goes away if a PDL processor is used

which has a more forgiving syntax, or if only a

visual check is performed on the PDL. The visual

check is appropriate only if module sizes are kept

small. After all, PDL syntax errors are only dam-

aging if they cause ambiguity or incorrect
interpretation in the design.

The problem with inconsistent levels of PDL ab-

straction that showed up on this project is

common to many different approaches and proc-

essors. This is bad because it is confusing, it
makes the design less understandable and less

easily checked by others. Abstraction is useful
because it hides those details unnecessary to this

portion of the problem solution. The more local-

ized the scope of detail, the less affected the

P. Usavage, Jr.
GE
6 of 23

system will be if it changes. Each person (or com-

ponent of software) has to be an expert in fewer

areas, and is free to concentrate and come up
with a better, more pure solution in his/her/its

own area. Removing unnecessary detail makes a
system design more understandable, modifiable
and robust.

The consistency problem decreases with program-

mer experience. Levels of abstraction can also be

checked for consistency during peer review or

structured walkthrough, giving feedback to the

programmer and allowing the descriptions to be
corrected. The best level of abstraction for a PDL

process description of a given module is some-

where above (less detailed than) the level at which
the source code for that module would need to be
written.

Despite the apparent problems the team was able,

however, to bring all portions of the system to

completion by the end of the test phase. The pro-

ductivity of the total effort was only very slightly

lower (a few percent) than that of the more tradi-

tional projects. This was probably affected by a

variety of factors including less effective training,
lack of tools and technical difficulties with the

platforms used, but also that slightly less docu-

mentation was produced than is normal.

Project 2

The second project for analysis was a 1988 IR&D

effort to design and implement a platform-inde-

pendent Ada binding for a Man-Machine

Interface. Portions of the project made use of the
graphic CASE tool when it was available. It used

an Ada based, uncompiled PDL but no PDL

processor. This project resulted in a larger design
than was implemented, with about 2000 lines of

compiled Ada code (again by semicolons, not in-

cluding blank or commented lines) being

produced.

During Requirements Analysis, Data Flow Dia-

grams were constructed to describe physical,
logical, and incarnation models. The resultant

diagrams were used during Preliminary Design to
help identify high-level objects and to partition

the system. Ada package specifications and their

bodies were written (with subprograms deferred)

and compiled to document the interfaces. Object

Dependency Diagrams were drawn to show the

object relationships.

During Detailed Design, extensive use was made

of the Aria compiler. Drivers were identified and
coded in Ada. Important type and object decla-

rations were coded within the package bodies. A

key routine in each of the major objects/packages

was coded and tested to ensure the feasibility of

the design. A key routine was some subprogram
that, when demonstrated, would validate most of

the design decisions for the rest of the subpro-

grams in an Ada package. Other, non-key

subprogram bodies were designed and docu-

mented only in PDL within the source modules.

This PDL used Ada syntax but was commented

and not compiled. Some type and data declara-

tions were coded compiled. Some structured

design diagrams were constructed but not many.

The burden of design documentation and analysis

and refinement was performed using compiled

package specifications, compiled key routines, and

PDLed subprograms. The CASE tool was not

continually available during this phase due activi-

ties involving the tool evaluation and purchasing
mechanism.

During the Coding phase the subprograms already

expressed in PDL were expanded to code. The

coded portion of the system was integrated, tested
and demonstrated.

Again, the overall project was successful but some

useful methodological refinements may be sug-

gested from observation. One such observation is

that because the graphic CASE tool was not al-

ways available during the project, a graphics

approach was not taken during much of the pre-

liminary and detailed design stages. Instead,

emphasis was placed very early on representing
the design with coding package specifications and
bodies. Much rework was involved as new alter-

native designs were identified, coded in Ada

package specifications and bodies, reviewed, then

modified. The normally constructive and neces-

sarily iterative process of conceiving a solution,

expressing it, evaluating it, and suggesting other

alternatives suddenly seemed to involve too much

effort and be too destructive to the participants.

One possible approach to this difficulty of rework

involves exploring the design in more detail, using

graphics and PDL within the CASE tool, before

package specifications are coded. The tool has

fairly good support for this. Balancing is checked,
and creation and modification of graphics is made

easy within a window--and--mouse oriented envi-

ronment. The tool checks balancing and graphic

relationship rules for the resulting diagrams.

Then, when the Ada package specifications are

coded and compiled, they are built on a founda-

tion of previous work which has already involved
consideration of many of the possible alternatives.

There should be tess need for generatirlg alterna-
tives.

Overall, the productivity of this project met that of

other projects in our organization's past.

Pro�oct 3

The third project was the most recent and the

most closely matched to the proposed methodol-

ogy. The late--1988 project completed the coding

and testing phase during the writing of this paper.

It redesigned and coded two CSCs (functions) of

a prototype real-time distributed ground system in
Ada. Over 7000 lines of Ada code (measured by

the same criteria as in the other projects) were

written. Extensive use of the graphic CASE tool

was made throughout the entire design effort.

Again, an automated PDL processor was not
used.

During the Software Requirements Analysis

phase, the system was modeled in Data Flow Dia-

grams. During Preliminary Design, these DFDs

were used to generate Objects and Operations,

and Object Interrelationship Diagrams were drawn

using the CASE tool. Major objects were coded

as Ada package specifications, with their opera-

tions being the subprograms exported from the

package specification.

During Detailed Design, Structure Charts were

drawn showing the interrelationships of each ob-

jects operations in performing some component of

the system's purpose. Each operation was de-
scribed with Ada--based PDL within the confines

of the CASE tool. Refinement was performed by

editing the PDL to increase the detail, then break-

ing out pieces of this new detail into new software

components and creating new modules for them

in the structure chart. When analysis and review
of the structure charts and PDL met with satisfac-

tory results, matching Ada package specs were

created. Each specification was coded to show
the exported resource (mostly types and subpro-

grams) and the procedures stubbed out. PDL

prologues were placed in the Ada modules, but no
PDL. The PDL remained within the CASE tool

database retrievable through the structure charts.

During the Coding phase, the subprograms were

written in Ada either from the PDL printed from
the CASE tool, or from the same PDL cut and

pasted into the modules through the window and
mouse-oriented workstation environment. The

design information remained available within the

CASE tool database (and would be delivered that

way, in a soft copy documentation scheme for de-

liverable software).

This approach seems to have paid off in a number

of ways. Partitioning seems to have been so fully

explored using the CASE tool that little rework of

P. Usavage, Jr.
GE
7 of 23

compiledAdapackagespecificationswasneces-
sary. Designalternativeswereefficientlyanalyzed
withintheCASEtool,wheregraphicandPDLin-
formationcombinedto givea goodviewof the
systemat severaldifferentlevelsof abstraction.

Modulesizeswerejudgedto beexcellent:a half
pagemaximumof PDL. Quitea fewmodules
testedcorrectlywhenfirst compiled,evenwhen
codedfrom PDLby a first--timeAdaprogram-
mer. Thiswasattributedto the simplicityof the
modulesandtheclarityofthePDL,whichin itself
mightbeattributedto thequalityof partitioning.

Thequalityof thePDLseemedtobeenhancedby
itsproximityto the graphicrepresentationof the
overallhierarchy,and the relativeeaseof tra-
versalfrom PDL descriptionto PDLdescription
throughoutthe hierarchy.Thiseaseof usecon-
tributed to good partitioningshowinggood
couplingandcohesioncharacteristics.

Theproductivityon thisprojectseemsto bewell
aheadof that establishedfor traditionalprojects
(in theballparkof a 10-20%improvementfora
first Adaproject).

Proc-
essed

Targ, Approach

C°m-C°m-piled piled
Ada PDL

Source

Project
1

Project
2

A view of PDL alternatives and our target approach

Figure 1

Un-

checked

PDL

ject
3

CONCLUSIONS AND SUGGESTIONS

Choice of Representation

One general theme in the methodology is to ex-

plore a design fully given the tool appropriate to
the level of abstraction. The choice of tool should

efficiently allow representation of that level of ab-

straction, and allow review, generation of

alternatives, and easy representation of the final

choice. Alternatives should be explored fully and

adequately at the design stage under considera-
tion, with the tool that does so in a most efficient

(and reliable) manner.

Graphics seem to be a useful, powerful, and effi-

cient tool for upper to middle level design. They

P. Usavage, Jr.
GE
8 of 23

also, with the proper tool, serve as an outstanding

mechanism for indexing or gaining access to the

low level of design. A graphical tree structure

with a system breakdown is more easily understan-

dible and more efficient a representation when

searching for a given piece of a system than any-

thing that we've seen before.

Quality and Testing

The alternatives and final choice of design from a

phase should be subjected to some form of testing,

that is, analysis, review, compilation, balance
checking, or whatever else can be done to find as

many errors as possible and to demonstrate as

much quality as can be demonstrated. This pro-
vides a firmer foundation for the work that follows

in development. As everyone knows, latent (un-

discovered)errorsoutputfroma phasearemuch
moreexpensiveto fix in laterstages.

Scaling Up to Large Systems

The methodology was designed from experience

in large systems--for application on large systems.

The one place where scaling will change emphasis
is on the choice of and number of tools. No PDL

processor was used at all for any of the examined

projects. This was due to the size of the projects

versus the cost of procuring a tool. This approach

should be re-examined for a larger projects.

On larger projects with more people it is more dif-

ficult and more important to have consistent,

quality PDL. A-PDL processor can contribute to-

ward this goal. It certainly doesn't hurt to

automatically check PDL for syntax and balancing
errors, as long as the correction of errors does not

detract from the creativity of design as sometimes

happens with a strict Ada compiled PDL. No
PDL processor is currently available that is inte-

grated with the chosen CASE tool, but alternatives

are being evaluated.

P. Usavage, Jr.
GE
9 of 23

THE VIEWGRAPHMATERIALS

FOR THE

p. USAVAGE, JR PRESENTATION FOLLOW

P. Usavage, Jr.
GE
13 of 23

!i!iiiiiiiiiiiiiiiii!i

r,,)_

Z

P. Usavage, Jr.
GE
14 of 23

o

_ _ _ _ • • _

©

0

ED

:_i!ii!iiiiiiiiiiiiiiiii"_

Z

©
,_cZ
_9

_D

f/3

©

i

_ o o • _ o o o • • • _

P. Usavage, Jr.
GE
15 of 23

P. Usavage, Jr.
GE
16 of 23

cr
(D

• 0 _ • • • 0 0 0

• _ 0 0 0 • • • •

P. Usavage, Jr.
GE
17 of 23

P. Usavage, Jr.
GE
18 of 23

• • _ • •

P. Usavage, Jr.
GE
19 of 23

P. Usavage, Jr.
GE
20 of 23

• • • 0 • • 0 •

iiiii!iiiiii
_D

r...--t

¢D
_D

d3
©

_D

NI

• ©

_ m_ o _ _ 0 < 0 _ _

0

0 • _ 0 • • • • 0 • •

P. Usavagc, Jr.
GE
21 of 23

P. Usavage, Jr.
GE
22 of 23

w

CZI

" :.:_iiiiiiii!iiii!i!iiiiii"_

• • @ •

P. Usavage, Jr.
GE
23 of 23

N91-10617

Representing Object Oriented Specifications and Designs

with Extended Data Flow Notations

Jon Franklin Buser _ _cq _ _,_

Paul T Ward

Abstract

This paper addresses the issue of using extended data

flow notations to document object oriented designs
and specifications. Extended data flow notations, for

the purposes of this paper, refer to notations that are
based on the rules of Yourdon / DeMarco data flow

analysis. The extensions include additional notation

for representing real-time systems as well as some

proposed extensions specific to object oriented
development. The paper will state some advantages

of data flow notations, investigate how data flow

diagrams are used to represent software objects,
point out some problem areas with regard to using

data flow notations for object oriented development,
and propose some initial solutions to these problems.

Introduction

Data flow diagramming is a general graphic-based
modeling notation that has gained wide industry ac-

ceptance as a software specification and design tool.

The proponents of object oriented techniques claim

that systems built using these techniques have a

natural system architecture that allows easier system
modification and software component reuse. The

authors support a method of system building that
follows an object oriented development strategy and
uses extended data flow notations to document the

specification and design. There are many reasons for

using data flow notation as the documentation
medium:

The notation is supported by a large number

of Computer Aided Software Engineering

(CASE) tools.

Data flow models are not specific to any par-

ticular computer language, operating system,

or hardware configuration making the neces-
sary investment in training and tools useful

over a wide spectrum of projects.

Data flow modeling has a relatively long
and successful record within the computer

industry; many software engineers already

have a working understanding of the nota-
tion.

Data flow diagrams use circles to represent

processes, or units of work within a system, and
arrows to represent data that is supplied to and
produced by the processes 1. Data Flow diagrams

can be used for modeling general problem
domains. These domain models are then evolved

into software system specifications and designs.

Figure 1 is a data flow diagram describing a Data
Storage and Reporting System. The system

produces reports on stored data and has a menu
driven user interface for adding and updating

records. A complete specification for the system

would also include a detailed description of each

process explaining how it will produce its output
given the input data supplied. The Ward / Mellor 2

and Boeing / Hatley 3 real-time extensions intro-

duce additional graphic symbols that are used to

integrate finite state machine logic into the model.
These state machine models strictly define the

relationship of operations within a model and can
potentially be executed to demonstrate the cor-
rectness of the model.

Object Oriented Partitioning

One of the key features of a data flow model is that
it maybe partitioned and leveled. This means that

a number of processes can be grouped together

into a single higher level process that represents
the combined operations of the lower level

processes. The highest level diagram in the model

(the context diagram) represents the system as a
single process and uses rectangular boxes to rep-

resent entities that are external to, but interact
with, the system being modeled. Figure 2 is a

J.F. Buser

Software Development Concepts
1 of 22

K_urt _ Menus

D Stored Data

eport

Data ?

Record I

Figuro 1

context diagram for the Data Storage and Reporting
System.

Traditionally, data flow models have been parti-
tioned by using a strategy called functional decom-
position. This is a top down method that identifies

high level system functions and then details, at the

next level of the model, what processes will be re-

quired to perform each function. This process is

repeated until all of the system's primitive com-

ponents have been identified. Figure 3 shows a pos-
sible functional partitioning of the Data Storage and

ystem
ser ser

Data
Menus (D_taagel

Reports \ Repgrt /

Figure 2

J.F. Buser

Software Development Concepts
2 of 22

Reporting System. The system is partitioned into

two sub-systems: one for managing data input and

the other for data reporting. Both sub-systems
have direct access to the data store.

There are other partitioning methods. One alter-

nate strategy groups together processes that are
parts of the response to a given external event.

Another organizes the model so that the number

of data flows between the higher level processes

are minimized. The choice of system partitioning
is important because it will define the major sub-

system interfaces and, in the case of large software

projects, it will probably define the management

structure of the organization that builds the sys-
tem.

Object oriented specifications are produced by
changing the criteria used when partitioning the

model. With the help of information modeling
techniques, classes of real world objects are iden-
tiffed in the problem domain 4. Then the data flow

model is partitioned by grouping together the

processes associated with each object or class. In
the case of the Data Storage and Reporting Sys-

tem we will identify a user interface object, a

report object, and a data store object. These

specification objects may be useable directly as

User

Input

Menus

Stored Data

rts

Figure 3

design objects, or they may have to be modified to

transform them into design objects (e.g., to meet
system performance constraints). These design ob-

jects can then be implemented as information hiding
modules or Ada packages.

Data Flow Problems

We have found the object oriented partitioning

strategy useful, however some of the rules governing

traditional data flow diagrams and the CASE tool

implementations of these rules conflict with object
oriented goals.

One goal of object oriented design methods is to
identify reusable objects. These objects may be
reused within the same model or in different but

related problem domains. Many of the CASE tools

have a problem with regard to reusing these objects
in the same model because the CASE tools typically

enforce that all processes have unique names. If we

want a process to be reused within a single model,

naming conventions have to be devised to specify that
different instances of the process are really the same.

Of course, without additional tool support it is im-

possible to prevent different instances of each object
from being modified so that they are no longer the
same.

Another problem is that objects designed with reuse
in mind will often be built in a more general manner

than ones that have been engineered for a specific
use. The result of this is that all of the object's

access functions or methods may not used in a

specific instance of the object. One of the primary
model validation criteria applied to data flow

diagrams is that all of the input and output flows
entering a process must exist in the lower level

description of the process. The existing CASE

tools will report errors when general reusable

objects are used in a model that does not make use

of all the object's capabilities. For example, a

_rData Key

d Field IDatard

Figure 4

J.F. Buser

Software Development Concepts
3 of 22

Add ?
New .; _ _ Update
Record _ Record

_sData __

tore _ --

\o ect/

Read

Record

Add New Record =

Input Key + Input Data Record

Update Record =

Input Key + Input Data Record

Read Record =

Input Key + Output Data Record

Figure 5 Figure 6

more general data store object for the Data Storage
and Reporting System might have a process for delet-

ing records from the store. If this object is instan-
tiated in an application that does not require a delete

capability the analysis routines in the current CASE
tools will report an error. To successfully level-

balance the model, the delete process and its as-
sociated flows will have to be removed. A CASE tool

designed to support importation of reusable objects

must have a facility for deactivating specific access
routines.

UIO.

Terminal
Interface

/

Interfac_

Object /__

DSO.
Add
New
Record

Representing Access Functions

Data flow models can be partitioned so that

processes are grouped together in an object
oriented fashion. The rules of data flow notation

also allow data flows to be grouped together. This

is commonly done to reduce the clutter of data

flows entering and leaving higher level processes.
We propose that the data flows should be grouped

together so that all of the input and output

parameters of each access routine are combined,

DSO.

RO.
Produce

Report

DSO.
Read

(eportObject

Record

J.F. Buser

Software Development Concepts
4 of 22

Update
Record

f_ Store

o ,ec /
J

DSO.
Read
Record

Figure 7

andthatthecombinedflowisnamedfortheaccess
routinethatit represents.If thisapproachis not
followedit is impossibleto determinewhichdata
flowsoperatetogether.Figure4showsthedatastore
objectfromtheDataStorageandReportingSystem.
Noticethatall information that correlates input and

output data with specific object capabilities has been
lost. Compare this to figure 5 which groups the

object's input and output flows together according to
which access routine they are associated with. Infor-

mation about the object's access routines is now

retained. Figure 6 shows the composition of the each
of the flows from figure 5.

Some CASE tools allow a data flow to have arrows

on both ends indicating a two way flow of informa-

tion. We suggest that this is a useful convention for

representing flows that have both an input and output
component. This notation is not completely adequate

though, because it will not be clear from this diagram

which object is using the other. This problem could
be alleviated by introducing a new graphic symbol to
indicate the direction of these combined flows or by

applying naming conventions. One naming conven-

tion could name the flow by concatenating the objects
name with the access function name, another conven-

tion could specifY whether a particular flow com-
ponent was an input or output (e.g., "input data

record" as opposed to just "data record"). Figure 7
shows how the data store object integrates with the

rest of the Data Storage and Reporting System using
the double arrow head convention.

Future Work

Data flow diagrams can be used to model object

oriented specifications and designs, however addi-
tional conventions may be needed for this to work

well. Further work is needed to identify all of these
conventions and to integrate them into CASE tools.

Two areas of particular need are tools that will sup-

port the concept of inheritance, and browsers that

can scan reusable software object libraries docu-
mented with data flow diagrams.

111

121

[31

I41

References

T. DeMarco, Stmctured Analysis and

System Specification, New Jersy:
Prentice-Hall, 1978

P.Ward and S. Melior, Structured Analysis

for Real- Time Systems, New Jersy:
Prentice-Hall, 1985.

D. Hatley and E. Pirbhai, Strategies for
Real- Time System Specifications, New
York: Dorset House, 1987.

S. Mellor and S. Shlaer, Object Oriented

System Analysis, New Jersy:
Prentice-Hall, 1988.

J.F. Buser

Software Development Concepts
5 of 22

THE VIEWGRAPH MATERIALS

FOR THE

J. F. BUSER PRESENTATION FOLLOW

PAGE,, _ INTENTIONAELY BLANK

Representing Object Oriented

Specifications and Designs

with

Extended Data Flow Notations

by

Jon Franklin Buser

Paul T Ward

.... INT£NTIONAbi.¥BLANK

J.F. Buser

Software Development Concepts
9 of 22

Software Development Concepts Background
Information

• Real-Time Data Flow Diagram Extensions

• Develop Courses and Teach Real-Time
Specification and Design Methods

• Work with CASE vendors

• Continued Research into Real-Time Development
and Object-Oriented Methods

J.F. Buser

Software Development Concepts
10 of 22

Goal

Develop ways to represent object oriented designs
and specifications with Data Flow Diagram based
notations.

J.F. Buser
Software Development Concepts
11 of 22

Advantages of Data Flow Diagrams

• Supported by many CASE tools

• NOT specific to any computer language or
operating system

• Many Software Engineers already have a working
understanding

3.F. Buser

Software Development Concepts
12 of 22

Data Flow Problems

• CASE tool enforced unique names conflict with
component reuse

• Level-Balancing conflicts with building general
reusable components that have unused access
functions

• Commonly used partitioning strategies do NOT
reinforce the concept of Software Objects

J.F. Buser

Software Development Concepts
13 of 22

The Data Storage and Reporting System

System

User

User Input

Menus

Reports

J.F. Buser

Software Development Concepts
14 of 22

Data Storage and Reporting System

Detailed View

User

_npf U_ey

(iiii: 1 Field

Menu

Add

New

Record

port

Selection Data

Record

Key Field +

Data Record

Stored Data

Key

Field

J.F. Buser

Software Development Concepts
15 of 22

Data Storage and Reporting System

Functional Partitioning

User

Input

Menus

Data

Records

Data

Records

Reports

Stored Data

J.F. Buser

Software Development Concepts
16 of 22

Objects in the Data Storage and Reporting System

• Data Store Object

• Report Object

• User Interface Object

J.F. Buser
Software Development Concepts
17 of 22

The Data Store Objects grouped together

I Data Key
Record Field

Data

_J Record

J.F. Buser

Software Development Concepts
18 of 22

New Partitioning Conventions

for Representing Objects

• Group together processes that operate on the same
real-world objects

• Group together Data Flows that are associated with
the same process or access routine

• Name the combined flow for the access routine that
it is attached to

• Use double arrow head if the flow is composed of

both input and output flows

J.F. Buser
Software Development Concepts
19 of 22

The Data Store Object

iiior
Read

Record

Add New Record =

Input Key + Input Data Record

Update Record =

Input Key + Input Data Record

Read Record =

Input Key + Output Data Record

J.F. Buser

Software Development Concepts
20 of 22

Object Oriented View of the

Data Storage and Reporting System

UIO.
Terminal

Interface
RO.
Produce

Report

DSO.
Add
New

Record

DSO.

Update
Record

DSO.
Read

Record

r DSO.
Read

Record

J.F. Buser
Software Development Concepts
21 of 22

Future Work

• Work further with these conventions

• CASE tools to support reuse and inheritance

• Browsers to scan libraries of reusable components
documented with Data Flow Diagrams

J.F. Buser

Software Development Concepts
22 of 22

APPENDIX A

ATTENDEES OF THE 1988 SOFTWARE ENGINEEING WORKSHOP

ATTENDEES OF THE 1968 SOFTWARE ENGINEERING WORKSHOP

ADLER, DAVID
ADLER, JONATHAN
AGRESTI, BILL
AMMANN, PAUL
AMSLER, JOHN
ANDERSON, MARSHALL
ANGIER, BRUCE
ANTONOPULOS, BETH
ASTILL, PATRICIA
AUSTIN, GIL
AZZOLINI, JOHN
BARBER, GARY
BARKSDALE, JOSEPH
BASILI, VIC
BAYNES, PERCY
BEALL, DANIEL
BEARD, R
BEARDSLEY, KARLA
BECK, HANK
BEIERSCHMITT, MICHAEL
BENNETT, TOBY
BIGWOOD, DOUGLAS
BISIGNANI, MARGARET
BLAGMON, LOWELL
BLAND, SKIP
BLUM, BRUCE
BODIN, JOSEPH
BOND, JACK
BOOTH, ERIC

BOYCE, MARY-ANN
BRANCH, EDWARD
BREDESON, MIMI
BREDESON, RICHARD
BRILLIANT, SUSAN
BRINKER, ELISABETH
BROPHY, CAROLYN
BROWN, DAVID
BROWN, JAMES
BUCHANAN, GEORGE
BUELL, JOHN
BURCAK, THOMAS
BURLEY, RICK

BUSER, JON
BUTSCHKY, MICHAEL
CALDIERA, GIANLUIGI
CARMODY, CORA
CASHOUR, JOHN
CAUGHEL, BRIAN
CERNOSEK, GARY
CHANG, JOAN
CHASSON, MARGARET
CHEADLE, BILL
CHEN, JENNIFER

THE MITRE CORP.
UNIVERSITY OF MARYLAND
MITRE CORP.
THE SOFTWARE PRODUCTIVITY CONSORTIUM
OAO CORP.
DEPT. OF DEFENSE
INSTITUTE FOR DEFENSE ANALYSIS
NASA/GSFC
SIGMA DATA SERVICES
liT RESEARCH INSTITUTE
NASA/GSFC

INTERMETRICS, INC.
NASA/GSFC
UNIVERSITY OF MARYLAND
VITRO CORP.
FORD AEROSPACE CO.

THE MITRE CORP.
JET PROPULSION LAB
FORD AEROSPACE
FORD AEROSPACE CORP.
LOCKHEED CORP.
THE MITRE CORP.
NAVAL CENTER FOR COST ANALYSIS
UNISYS CORP.
THE JOHNS HOPKINS UNIVERSITY
COMPUTER SCIENCES CORP.
NATIONAL SECURITY AGENCY
COMPUTER SCIENCES CORP.
RMS TECHNOLOGIES
DEPT. OF DEFENSE
SPACE TELESCOPE SCIENCE INST.
OMITRON
UNIVERSITY OF RICHMOND
NASA/GSFC
UNIVERSITY OF MARYLAND
AUBURN UNIVERSITY
JET PROPULSION LAB
IIT RESEARCH INSTITUTE
COMPUTER SCIENCES CORP.
PLANNING RESEARCH CORP.
NASA/GSFC

SOFTWARE DEVELOPMENT CONCEPTS
COMPUTER SCIENCES CORP.
ITALSIEL SPA
PLANNING RESEARCH CORP.
DEPARTMENT OF DEFENSE
CADRE TECHNOLOGIES
MCDONNELL DOUGLAS ASTRONANTICS CO.
COMPUTER SCIENCE CORP.
IBM CORP.
MARTIN MARIETTA CORPORATION
COMPUTER SCIENCES CORP.

A-I

CHENN,PETER
CHERNOFF,DARLENE
CHESTER,ROWENA
CHIANG,TED
CHILDERS,TIMOTHY
CHU, RICHARD
CHUNG,ANDREW
CHURCH,VIC
CISNEY,LEE
CLARK,DAVID
CLIFTON,CHUCK
COLAIZZI,DONALD
COOK,JOHN
COUCHOUD,CARL
COURT,TERRY
CRAIG, CLYDE
CREECY, RODNEY
CREWS, TERRY
CRONE, MICHAEL
CROSS, JAMES
CUESTA, ERNESTO

CUPAK, JOHN
CURRY, DAN
D'AGOSTINO, JEFF
DASKALANTONAKIS, MICHAEL
DAVIS, CHARLES
DECKER, WILLIAM
DELLS, ALEX
DEUTSCH, MICHAEL
DIXON, BERNARD
DORBAND. JOHN
DREW, DAN
DUNIHO, MICKEY
DUNN, NEPOLIA
DUQUETTE, RICHARD
DUREK, TOM
DUVALL, LORRAINE
DVONG, VINNIE
DYER, MICHAEL
EBERHART, HERB
EDELSTEIN, E.
EDGAR, ERIC
EGGERTSEN, KARL
EISENHARDT, GEORGE
ELLIS, WALTER
ELMORE, RALPH
EMERY, KATHLEEN
ENG, EUNICE
ESKER, LINDA
EVANCO, WILLIAM
EVERS, JAY
FANG, HSIN
FANTASIA, DANIELE

UNIVERSITY OF MARYLAND
COMPUTER SCIENCES CORP.
MARTIN MARIETTA ENERGY SYSTEMS
FORD AEROSPACE
MARTIN MARIETTA
FORD AEROSPACE CO.
FAA TECHNICAL CENTER
COMPUTER SCIENCES CORP.
NASA/GSFC

UNISYS CORP.
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
NASA/GSFC
SOCIAL SECURITY ADMINISTRATION
HUGHES AIRCRAFT COMPANY
AUTOMETRIC, INC.
HUGHES
LMSC
HARRIS CORP.

AUBURN UNIVERSITY
COMPUTER SCIENCES CORP.
HRB SYSTEMS
MITRE CORP.
OAO CORP.

TRW
COMPUTER SCIENCES CORP.
UNIVERSITY OF MARYLAND
HUGHES AIRCRAFT CO.
NASA/GSFC
NASA/GSFC
UNISYS CORP.
NSA
COMPUTER SCIENCES CORP.

SPC, INC.
DUVALL COMPUTER TECHNOLOGIES, INC.
NSWC
IBM/FSD

GRUMMAN DATA SYSTEMS
HRB -- SYSTEMS
NAVAL SHIPS WEAPONS SYSTEM ENG. STATION

LOGICON, INC.
IBM
COMPUTER SCIENCES CORP.
VITRO CORP.
NASA/GSFC
COMPUTER SCIENCES CORP.
THE MITRE CORP.
UNISYS CORP.
IBM

UNIVERSITY OF MARYLAND

A-2

FELVER,HENRY
FERGUSON,FRANCES
FESHAMI,BARBARA
FINK, MARY LOUISE
FINNEGAN,KENNETH
FORMANEK,KATHLEEN
FORSYTHE, RON
FOX, STEPHEN
FRANKLIN, JUDE
FRANKS, KELLY
GACUK, PETER
GAFFKE, WILLIAM
GAFFNEY, JOHN
GANNETT, MARYE

GARCIA, ENRIQUE
GARDNER, MICHAEL
GIBSON, JOHN
GILLILAND, DENISE
GILYEAT, COLIN
GIRONE, CHUCK
GODFREY, PARKE
GODFREY, SALLY
GOETTSCHE, CRAIG
GOGIA, B.
GOLDEN, JOHN
GOLDSMITH, LARRY
GOODSON, ADOLPH
GORDON, HAYDEN
GRAFTON, ED
GRAVES, RUSELL

GRAVITTE, JUNE
GREEN, DANIEL
GREEN, SCOTT
GREENBERG, DIANA
GREGORY, SAMUEL
GRIMES, DONNA

GRONDALSKI, JEAN
GROSS, STEPHEN
HALL, GARDINER
HALL, JAMES
HANEY, MODENNA
HARRIS, AL
HARRIS, BERNARD
HARTLEY, JONATHAN
HASSETT, KEVIN
HEASTY, RICHARD
HEBENSTREIT, KARL
HECK, JOANN
HEFFERNAN, HENRY
HEILIG, VICKI
HELLER, GERRY
HENRY-NICKENS, STEPHANIE
HENSON, TROY

IBM
STANFORD TELECOMMUNICATIONS
SRA CORP.
PLANNING RESEARCH CORP.
MARTIN MARIETTA CORP.
MARTIN MARIETTA
NASA/WALLOPS FLIGHT FACILITY
XEROX ADVANCED INFORMATION TECHNOLOGY
EMHART/PRC
NASA/GSFC
SPAR AEROSPACE

PROJECT ENGINEERING, INC.

SPC, INC.
DEPARTMENT OF DEFENSE
JET PROPULSION LAB
COMPUTER SCIENCES CORP.
IBM/SID
STANFORD TELECOMMUNICATIONS INC.

ADVANCED TECHNOLOGY, INC.
GE ASTRO SPACE
UNIVERSITY OF MARYLAND
NASA/GSFC
NASA/GSFC
ENGINEERING & ECONOMY RESEARCH
EASTMAN KODAK CO.
DEPT. OF LABOR
NASA/GSFC
COMPUTER SCIENCES CORP.
LINK FLIGHT SIMULATION CORP.
DEPT. OF DEFENSE
FORD AEROSPACE CORP.
DOD
NASA/GSFC
PRC

IITRI

COMPUTER SCIENCES CORP.
NAVAL CENTER FOR COST ANALYSIS
FORD AEROSPACE CORP.
UNISYS CORP.
MARTIN MARIETTA

LOGICAN, INC.
NASA/GSFC
NASA/GSFC
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.

LOGICAN, INC.
RMS TECHNOLOGIES, INC.
GCN
IBM
COMPUTER SCIENCES CORP.
NASA/GSFC
IBM CORP.

A-3

HEYLIGER,GEORGE
HIHN, JAIRUS
HILDENBERGER,RUTH
HILL, DONNA
HODGES,WILLIAM
HOLLORAN,PATRICK
HOLMES,BARBARA
HOLOUBEK,DAN
HOQ,N.
HOUSER,WALTER
HOUSTON,FRANK
HOWLE,BILL
HUBER,HARTMUT
HULL, LARRY
HUTCHISON,ROBERTA
JACKSON,LAVERNE
JAHANGIRI,MAJID
JAKAITIS,JOYCE
JAWORSKI,ALLAN
JELETIC,JIM
JESSEN,WILLIAM
JOESTING,DAVID
JOHNSON,DONNA
JOHNSON,RON
JORDAN,LEON
JUDK1NS,HENRY
KANG,KYO
KANNAPPAN,SAM
KAPLAN,STEVEN
KASCHAK,PAUL
KELLY,JOHN
KELLY, LISA
KEMP,KATHRYN
KERNAN,KEVIN
KESTER,RUSH
KILSDUNK,THOMAS
KIM, CHRISTINE
KIM, SEUNG
KIRBY,JAMES
KIRK,DANIEL
KLITSCH,GERALD
KNIGHT,JOHN
KOUCHAKDJIAN,ARA
KOWALCHACK,BONNIE
KRAMER,NANCY
KRAUS,PAUL
KUBARYK,PETER
KUDLINSKI,ROBERT
KUMAR,V.
KURIHARA,TOM
LABAUGH,ROBERT
LAL, NAND
LANDIS,LINDA

COMPUTERTECHNOLOGYASSOCIATES
JETPROPULSIONLAB
MITRECORP.
NSWC
BOEINGAEROSPACECO.
SEI
CRMI
LMSC
ENGINEERING& ECONOMYRESEARCH
VETERANSADMINISTRATION
FOOD& DRUGADMIN.
NASA/MSFC
NSWC
NASA/GSFC
THE MITRECORP.
PLANNINGRESEARCHCORP.
COMPUTERSCIENCESCORP.
AMERICANSYSTEMSCORPORATION
SOFTWAREPRODUCTIVITYCONSORTIUM
NASA/GSFC
RCA-- ESD
BENDIXFIELD ENGINEERINGCORP.
COMPUTERSCIENCESCORP.
COMPUTERSCIENCESCORP.
COMPUTERSCIENCESCORP.
ATL1SFEDERALSERVICES
SOFTWAREENGINEERINGINSTITUTE
ABI ENTERPRISES
DEPT.OF DEFENSE
NAVAL CENTERFORCOSTANALYSIS
JETPROPULSIONLAB
NASA/GSFC
VITROCORP.
RATIONAL
GTEGOVERNMENTSYSTEMS
DEPT.OFDEFENSE
COMPUTERSCIENCESCORP.
COMPUTERSCIENCESOORP.
SOFTWAREPRODUCTIVITYCONSORTIUM
NASA/GSFC
COMPUTERSCIENCESCORP.
SPC,INC.
UNIVERSITYOFMARYLAND
APPLIEDPHYSICSLAB
PRC
COMPUTATIONALENGINEERING,INC.
IITRI
NASA/LANGLEY
NASA/STX
U.S.DEPT.OFTRANSPORTATION
MARTINMARIETTAAEROSPACECORP.
NASA/GSFC
COMPUTERSCIENCESCORP.

A-4

LASKY,JEFFREY
LAVALLEE, DAVID
LAWRENCE-PFLEEZER,SHARI
LEDFORD,RICK
LEE, TOM
LEENHOUTS,KATHLEEN
LEFEVRE,JEANNE
LEFKOWITZ,SHARON
LESAGE,LUCIAN
LIN, CHI
LINDSEY,JOEL
LIU, JEAN
LIU, KUEN-SAN
LLOYD, MICHAEL
LOESH,BOB
LOWE,DAWN
LUCZAK,EDWARD
LUCZAK,RAY
LYTTON,VICTOR
MACCHINI,BRUNO
MACK, JOHN
MALACANE,CHRISTINE
MALHOTRA,SHAN
MANGIER/,MARK
MANN, TIM
MARCINIAK,JOHN
MARESCA,PAUL
MARKUS,CYNTHIA
MARTIN,GEORGE
MASTER,PAT
MATHIASEN,CANDY
MATT/, RUTH
MAURY, JESSE
MCCONNAUGHERY, ED
MCDONALD, BETH
MCGARRY, FRANK
MCGARRY, PETER
MCKEAG, THOMAS
MCKENNA, JOHN
MCLEOD, JOHN
MCQUILLAN, ARIEL
MEESON, REG
MERIFIELD, JAMES
MILLER, JOHN
MIRSCH, CYNTHIA
MITTAL, AJAY
MOHANTY, SIBA
MOHRMAN, CARL
MOLESKI, LAURA
MOLESKI, WALT
MOLKO, PATRICIA
MONTOYA, MARIA
MOORE, MIKE
MOORSHEAD, ART

ROCHESTER INSTITUTE OF TECHNOLOGY
FORD AEROSPACE & COMM. CORP.
GEORGE MASON UNIVERSITY
MCDONNELL DOUGLAS CORP.
NASA/GSFC
GENERAL ELECTRIC
UNISYS CORP.
[IT RESEARCH INSTITUTE
DEPT. OF DEFENSE
JPL
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
GENERAL DYNAMICS
SYSTEM TECHNOLOGY INSTITUTE
NASA/GSFC
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
US DEPT OF AGRICULTURE
UNIVERSITY OF MARYLAND
ARCHITECTURE TECHNOLOGY
THE MITRE CORP.
JPL
JOHNSON SPACE CENTER

COMPUTATIONAL ENGINEERING, INC.
MARCINIAK & ASSOCIATES

ADASOFT, INC.
AMERICAN SYSTEMS CORP.
PROJECT ENGINEERING INC.
[IT RESEARCH INSTITUTE
UNISYS CORP.

NASA/GSFC
PLANNING & ANALYSIS CORP.
DEPT. OF DEFENSE
NASA/GSFC

GENERAL ELECTRIC
HRB -- SYSTEMS
NSA
JET PROPULSION LAB
NASA/GSFC
INSTITUTE FOR DEFENSE ANALYSIS
ADVANCED TECHNOLOGY
COMPUTER SCIENCES CORP.
GENERAL ELECTRIC
EER TECHNOLOGIES

QSOFT, INC.
MARTIN MARIETTA ATC
CRMI
NASA/GSFC
JET PROPULSION LAB
MCDONNELL DOUGLAS ASTRONAUTICS CO.

CTA, INC.
WESTINGHOUSE ELECTRIC

A-5

MOWERY, ED
MOYLAN, ALDEN
MRENAK, GARY
MUDRONE, JAMES
MULARZ, DIANE
MURPHY, ROBERT

MUSA, JOHN
MYERS, I,EANNA
MYERS, PHILIP
NARROW, BERNIE
NG, EDWARD
NGUYEN, BAO
NORCIO, TONY

NORO, MASAMI
O'BRIEN, ROBERT
O'HARA-SCHETTINO, LIZ
O'NEILL, L.
OHLMACHER, JANE
OWENS, AL
OWENS, KEVIN
PAGE, JERRY
PAJERSKI, ROSE
PALMER, JAMES
PARKER, JAMES
PATEL, KANT
PEARSON, BOYD
PERKINS, DOROTHY
PHILLIPS, GAIL
PIETRASANTA, AL
PIETSCH, ILA
PINCOSY, JOHN
PIXTON, JERRY
PLETT, MICHAEL
PLUNKETT, THERESA
POLLACK, JAY
POW, WILLIAM
PRINCE, ANDY
PUGH, DOUGLAS
PUMPHREY, KAREN
PUTNEY, BARBARA

QUANN, EILEEN
QUIMBY, KELVIN
RACINE, GLENN
RANSOM, BERT
RASH, JAMES
RAUTNER, JIM
RAWERS, KEVIN
REEDY, CHRISTOPHER

RICE, RAYMOND
RIGNEY, BRANDON
RITTER, SHEILA
ROBBINS, DON
ROBERTS, BECKY
ROBINSON, MARY

THE MITRE CORP.

COMPUTER SCIENCES CORP.

DEPT. OF DEFENSE
THE MITRE CORP.
NASA/GSFC
AT&T BELL LABORATORIES
U.S. BUREAU OF LABOR STATISTICS
COMPUTER SCIENCES CORP.
BENDIX
JET PROPULSION LAB

HQ UASF/SCTT
UNIVERSITY OF MARYLAND
UNIVERSITY OF MARYLAND
NASA/GSFC
GEORGE MASON UNIVERSITY
AT&T BELL LABS
SOCIAL SECURITY ADM.
NAVAL RESEARCH LAB
PLANNING RESEARCH CORP.
COMPUTER SCIENCES CORP.
NASA/GSFC
APL
raM
COMPUTER SCIENCES CORP.
NASA/GSFC
NASA/GSFC
COMPUTER SCIENCES CORP.

DEPT. OF DEFENSE
DATA SYSTEMS ANALYSIS
UNISYS CORPORATION
COMPUTER SCIENCES CORP.
DEPT. OF DEFENSE
COMPUTER SCIENCES CORP.

PRS SYSTEMS SERVICES

IIT RESEARCH INSTITUTE/DQT
COMPUTER SCIENCES CORP.
NASA/GSFC
FASTRAK
COMPUTER SCIENCES CORP.
AIRMICS
NASA/GSFC
NASA/GSFC

MOUNTAINET, INC.
LOCKHEED
BETAC CORP.

MCDONNELL DOUGLAS ASTRONAUTICS, CO.
PRC
NASA/GSFC
GTE -- GOVERNMENT SYSTEMS
PRC
THE MITRE CORP.

A-6

ROBINSON,RICHARD
ROBINSON,STEVE
ROBISONIII, W.
ROGERS,KATHY
ROHR,JOHN
ROMBACH,DIETER
ROSS,DON
ROUNDS,CHUCK
ROY,DANIEL
RUCKI,DAN
RUPERT,FRED
RUTEMILLER,OREN
SABIA,STEVE
SABOTIN,ROSA
SALOMON,ARTHUR
SAMSON,DOLLY
SAYANI,HASAN
SCAVETTI,JOSEPH
SCHUBERT,KATHY
SCHULTHEISZ,ROBERT
SCHWARTZ,MICHAEL
SCHWENK,ROBERT
SCIULLO,ED
SCOTT,LEIGHTON
SEAVER,DAVID
SEIDEWITZ,ED
SEIGLE,JEFF
SELVAGE,ROB
SEVER,GEORGE
SEVERINO,TONY
SHANK,DWIGHT
SHEN,VINCENT
SHEPPARD,SYLVIA
SHERE,KEN
SHI,LEON
SHOAN,WENDY
SHUPE,GARY
SHUSTER,DAVID
SHYMAN,STEVEN
SIEG-ROSS,SANDY
SINCLAIR,SEAN
SKINNER,JUDITH
SMITH,DAN
SMITH,KATHRYN
SMITH,LEN
SMITH,PATRICIA
SNYDER,TIM
SOLOMAN, CARL
SOVA, DONALD
SPANGLER, ALAN
SPENCE, BAILEY
SPIEGEL, DOUG
SPIEGEL, MITCHELL
SRIRANGARAJAN, RAJAN

THE MITRE CORPORATION
DYNAMICS RESEARCH CORP.
JET PROPULSION LAB
THE MITRE CORP.
JET PROPULSION LAB
UNIVERSITY OF MARYLAND

IIT RESEARCH INSTITUTE
SRA CORP.
FORD AEROSPACE CORP.
DEPT. OF DEFENSE
FEDERAL HOME LOAN MORTGAGE CORP.

STANFORD TELECOMMUNICATIONS, INC.
NASA/GSFC
COMPUTER SCIENCES CORP.

STANFORD TELECOMMUNICATIONS, INC.
GEORGE MASON UNIVERSITY
ADVANCED SYSTEMS TECH CORPORATION
AMERICAN SYSTEMS CORP.
NASA/LERC
NATIONAL LIBRARY OF MEDICINE
IITRI/ECAC
NASA/GSFC
NATIONAL LIBRARY OF MEDICINE
NSA

PROJECT ENGINEERING, INC.
NASA/GSFC
COMPUTER SCIENCES CORP.
U.S. TREASURY/FMS
MARTIN MARIETTA
GENERAL ELECTRIC/RCA

COMPUTER SCIENCES CORP.
MCC
COMPUTER TECHNOLOGY ASSOCIATES
AVTEC SYSTEMS
COMPUTER SCIENCES CORP.
NASA/GSFC

NAVAL DATA AUTOMATION COMMAND
DATA SYSTEMS ANALYSTS
INSTITUTE FOR DEFENSE ANALYSES
U.S. EPA
COMPUTER SCIENCES CORP.
JET PROPULSION LAB
FORD AEROSPACE CORP.
NASA/LARC
COMPUTER SCIENCES CORP.
NSWC
COMPUTER SCIENCES CORP.
NASA/GSFC

NASA/HQ
IBM
COMPUTER SCIENCES CORP.
NASA/GSFC
GTE SYSTEMS
THE MITRE CORP.

A-7

STANLEY,CAROLYN
STARK,MICHAEL
STEINBACHER,JODY
STEINBERG,SANDEE
STEVENSON,JEFF
STEWART,CHARLES
STOKES,SAM
STRAUB,PABLO
STUMPO,PAUL
SUBOTIN,ROSA
SUD,VED
SUN,ALICE
SWAIN,BARBARA
SYMMES,BRIAN
SZULEWSKI,PAUL
TASAKI,KEIJI
TAUSWORTHE,ROBERT
TAYLOR,TOM
THACKERY,KENT
THEOFANOS,MARY
THOMPSON,JIM
THOMPSON,JOHN
THOMPSON,WILLIAM
THORNTON, THOMAS
THRASYBULE, WESNER
TOMPKINS, JEFF
TRAN, LAN
TREFFER, LEIGH
TSOUNOS, ANDREW
ULERY, BRADFORD
USAVAGE, PAUL
VALETT, JON
VALETT, SUSAN
VAN DITTA, MARK
VERNACCHIO, AL
VOGEL, MICHAEL
WALIGORA, SHARON
WALKER, GARY
WALLACE, CHARLES
WALTMAN, ROBERT
WATERMAN, BOB
WATSON, STAN
WEBSTER, THOMAS
WEISMAN, DAVID
WEISS, DAVE
WELBORN, RICHARD
WELLS, CYNTHIA
WENDE, CHARLES
WHEELER, JIM
WILLIAMSON, DAVID
WlLLIAMSON, PHIL
WILSON, JEAN
WONG, WILLIAM
WOOD, RICHARD

MARTIN MARIETTA
NASA/GSFC
JET PROPULSION LAB
COMPUTER SCIENCES CORP.
MARTIN MARIETTA
CRMI
THE MITRE CORP.
UNIVERSITY OF MARYLAND
DEPT. OF DEFENSE
COMPUTER SCIENCES CORP.
MITRE CORP.
THE MITRE CORP.
UNIVERSITY OF MARYLAND
U.S. EPA

C.S. DRAPER LABS, INC.
NASA/GSFC
JPL

BUREAU OF THE CENSUS
PLANNING ANALYSIS CORP.
MARTIN MARIETTA ENERGY SYSTEMS
FREDDIE MAC
FORD AEROSPACE
NSWC
JPL
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
JET PROPULSION LAB.
IITRI
SEI
UNIVERSITY OF MARYLAND
GENERAL ELECTRIC
NASA/GSFC
NASA/GSFC
INFORMATION SYSTEMS & NETWORKS CORP.
NASA/GSFC
PRC

COMPUTER SCIENCES CORP.
JET PROPULSION LAB
RAYTHEON SERVICE CO.
IBM
VITRO CORP.
NASA/GSFC
COMPUTATIONAL ENGINEERING INC.
UNISYS CORP.

SPC, INC.
STANFORD TELECOMMUNICATIONS, INC.
COMPUTATIONAL ENGINEERING, INC.
NASA/GSFC

NAVAL DATA AUTOMATION COMMAND
I1TRI
BOEING COMPUTER SUPPORT SERVICES
MDAC/KSC
NATIONAL INSTITUTE OF STANDARDS & TECH.
COMPUTER SCIENCES CORP.

A-8

WOOD, TERRI
WRIGHT, CYNTHIA
WU, SABINA
WU, YEN
YAAKOV, BEN-AMI
YANG, CHAO
YEE, MARY
YENCHZ, MARTIN
YU, STELLA
YUNG, K
ZAVELER, SAUL
ZELKOWITZ, MARV
ZIMET, BETH
ZYGIELBAUM, ART

NASA/GSFC
THE MITRE CORP.
IITRI
IITRI
JET PROPULSION LAB
NASA/GSFC

LOGICON, INC.
WESTINGHOUSE
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
US AIR FORCE
UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CORP.
JET PROPULSION LAB

A-9

APPENDIX B

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

ST_qDA__Rn BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedinas From the First Summer Software Engi-

neering Workshop, August 1976

SEL-77-002, Proceedinas From the Second Summer Software En-

q_neerina Workshop, September 1977

SEL-77-004, A Demon_tration of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Lanuuaaes

Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, prqceedinas From the Third Summer Software Enui-

neerinu Workshop, September 1978

SEL-78-006, GSFC Software Engineerina Research Reauirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, ADDlicabilitv of the Ravleiah Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Prouram
(SAP) User's Guide (Revision 3), W. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, The Software Enaineering Laboratory: Relation-

ship Euuations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module RePository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Ev%luati0n of the Caine, Father, and Gordon Pro-

gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Desiqn Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September

1979

B-I

9913

SEL-79-005, Proceedinos From the Fourth Summer Software En-
uineerinu Workshop, November 1979

SEL-80-002, Multi-Level ExPression Desiun Lanuuaue-

Reuuirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground SuPPort
Software System (MMS/GSSS) State-of-the-Art Computer SYstems/

Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedinus From the Fifth Annual Software Enqi-
neerinu Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Enuineerinu Laboratory Prourammer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatinu Software Development by Analysis of

Chanue Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleiuh Curve as a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Enqi-
n_ering WOrkShop, December 1981

SEL-81-014, Automated Collection of Softw%r_ Engineering
Data in the Software Enqineerin0 Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The Software Engineering LaboratQry, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

9913

B-2

SEL-81-107, Software Enuineerinu Laboratory (SEL) Compendium

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodolouv for Fliuht Dynamics, G. Page,

F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Manauement Measures of Software

Development, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-004, Collected Software Enuineerinu Papers:

ume i, July 1982

Vo i-

SEL-82-007, Proceedinus From the Seventh Annual Software

Enuineerinq Workshop, December 1982

SEL-82-008, Ev_l_atinu Software Development by Analysis of
Chanqes: The Data From the Software Enuineerinu Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-82-I02, FORTRAN Static Source Code Analyzer Prouram
(SAP} System Description (Revision 1), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-I05, glossary of Software Enuineerinu Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,

October 1983

SEL-82-706, Annotated Bibliouraphv of Software Enuineerinu

Laboratory Literature, G. Heller, January 1989

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software EnQineerinu Papers:

_m@ II, November 1983

VOI-

SEL-83-006, Monitoring Softw_r@ D@velopment Throuqh Dynamic

Variables, C. W. Doerflinger, November 1983

9913

B-3

SEL-83-007, Proceedinus From the Eiahth Annual Software En-

qineerinu Workshop, November 1983

SEL-84-001, Manaaer's Handbook for Software Development,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003, _nvestiuation of Specification Measures for the

Software Enaineerinu Laboratory (SEL_, W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedinus From the Ninth Annual Software Enui-

neerina Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-

D__, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,

April 1985

SEL-85-002, Ads Trainina Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected Software Enaineerina Papers: Vol-

ume III, November 1985

SEL-85-004, Evaluations of Software Technolouies: Testinu.

CLEANROOM. and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testinu, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinas From the Tenth Annual Software Enui-

n@erinq Workshop, December 1985

SEL-86-001, Programmer's Handbook for Fliuht Dynamics Soft-

w_r@ D_vglopment, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enaineerinq Papers:

ume IV, November 1986

Vo I-

SEL-86-005, Measurina Software Desiqn, D. N. Card, October

1986

9913

B-4

SEL-86-006, Proceedinus From the Eleventh Annual Software

Enqineerinq Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for

Fliqht Dyn%mics Software Development, S. Perry et al., March

1987

SEL-87-002, Ada Style Guide (Version i.i), E. Seidewitz

et al., May 1987

SEL-87-003, Guidelines for Applyina the Composite Specifica-

tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessinu the Ada Design Process and Its Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL

Database, G. Heller, October 1987

SEL-87-009, Collected Software Enaineering Papers:

S. DeLong, November 1987

Volume V,

SEL-87-010, Proceedings From th@ Twelfth Annual Software En-

aine_ring Workshop, December 1987

SEL-88-001, System Testinu of a Production Ada Project:

GRODY Study, J. Seigle and Y. Shi, November 1988

The

SEL-88-002, Collected Software Enuineerina Papers:

um@ VI, November 1988

Vol-

SEL-88-003, Evolution of Ada Technolouv in the Flight Dynam-

ics Area: Design Phase An%ivsis, K. Quimby and L. Esker,

December 1988

_EL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,

"Designing With Ada for Satellite Simulation: A Case Study,"

Proceedinas of the First International Symposium on Ada for

the.NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Program Transformation and Pro-

gramming Environments. New York: Springer-Verlag, 1984

9913

B-5

1Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Enaineerinu.

New York: IEEE Computer Society Press, 1981

IBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Computer Technoloav,

January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software

Manaqement and Enaineerina. New York: IEEE Computer Society

Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Meth-

odology," Proceedinas of the First Pan-Pacific Computer Con-

ference, September 1985

iBasili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-

lems?," Journal of SYstems and Software, February 1981,

vol. 2, no. 1

iBasili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of SYstems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL,"

Proceedinas of the International Computer Software and Ap-

plications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environm@n_, University

of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," Communications of

the ACM, January 1984, vol. 27, no. 1

iBasili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"

Proceedinus of the ACM SIGMETRICS Symposium/Workshop: Qual-

ity Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coveraue of Func-

tional Testinu, University of Maryland, Technical Report

TR-1442, September 1984

9913

B-6

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"

Proceedinas of the IEEE/MITRE Expert Systems in Government

SYmposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedinqs of the Workshop

on Ouantitative Software Models for Reliabilitvo Comolexitv.

and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Proceedinus of

the 9th Internation_l Conference on Software Enaineerinu,

March 1987

5Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada

Measurement Environment," Proceedinas of the Joint Ada Con-

ference, March 1987

5Basili, V. and H. D. Rombach, "T A M E: Integrating Meas-

urement Into Software Environments," University of Maryland,

Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:

Towards Improvement-Oriented Software Environments," IEEE

Transactions on Software Enuineerinu, June 1988

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-

ysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software Engineerina, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use

of an Environments's Characteristic Software Metric Set,"

Proceedinqs of the Eiuhth International Conference on Soft-

ware Enqineerinu. New York: IEEE Computer Society Press,

1985

Basili, V. R., and R. W. Selby, Jr., Comparinu the Effective-

ne_8 of Software Testing Strateuies, University of Maryland,

Technical Report TR-1501, May 1985

3Basili, V. R. and R. W. Selby "Four Applications of a

Software Data Collection andAnalysis Methodology," Proceed-

inqs of the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," IEEE Transactions on

Software Engineerinq, July 1986

9913

B-7

5Basili, V. and R. Selby, "Comparing the Effectiveness of

Software Testing Strategies," IEEE Transactions on Software

Enaineering, December 1987

2Basili, V. R., and D. M. Weiss, A Methodolouv for Collectinq

Valid Software Enuineerina Data, University of Maryland, Tech-

nical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-

ing Valid Software Engineering Data," IEEE Transactions on

Software Enuineerinu, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedinas of the Fif-
teenth Annual Conference on Comouter Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedinus of the Software Life

Cycle Manaaement Workshoo, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering Laboratory," Proceedinas of the Second Soft-

w_r@ Lif@ Cycle Mana0ement Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment," Com-

Dut@rs an_ _tructures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedinas of the Thir_ Int@rn_-

tional Conference on Software Enaine_rinq. New York: IEEE

Computer Society Press, 1978

5Brophy, C., W. Agresti," and V. Basili, "Lessons Learned

in Use of Ada-Oriented Design Methods," Proceedinus of the
Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,

"Lessons Learned in the Implementation Phase of a Large Ada
Project," Proceedinas of the W_$hinqton Ada Technical Con-

ference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and

Program Size," Computer Sciences Corporation, Technical Memo-
randum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques

for Resource Estimation," Computer Sciences Corporation,

Technical Memorandum, November 1982

9913

B-8

3Card, D. N., "A Software Technology Evaluation Program,"

Annais do XVIII Conaresso Nacional de Informatica, October

1985

5Card, D. and W. Agresti, "Resolving the Software Science

Anomaly," The Journal of Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design

Complexity," The Journal of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,

"A Software Engineering View of Flight Dynamics Analysis

System," Parts I and II, Computer Sciences Corporation,

Technical Memorandum, February 1984

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-

cal Study of Software Design Practices," IEEE Transactions

on Software Engineerinu, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-

tics of FORTRAN Modules," Computer Sciences Corporation,

Technical Memorandum, June 1984

5Card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies," _EEE Transactions on Software

Enaineerinq, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," PrQceedinus of the Eiqhth Interna-

tional Conference on Software Enuineerinq. New York: IEEE

Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceedinqs

Qf th_ Fifth International Conference on Software Enqine_r-

inq. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and

Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Enaineerina Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedinas of the

Seventh International C0mouter Software and Applications

Conference. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,

August 1987 (NOTE: i00 pages long)

9913

B-9

6Godfrey, S. and C. Brophy, "Experiences in the Implementa-

tion of a Large Ada Project," Proceedinqs Of the 1988

Washinaton Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource

Data: A Model for Logical Association of Software Data,"

University of Maryland, Technical Report TR-1848, May 1987

6jeffery, D. R., and V. R. Basili, "Validating the TAME

Resource Data Model," Proceedinas of the Tenth International

Conference on Software Engineering, April 1988

5Mark, L. and H. D. Rombach, "A Meta Information Base for

Software Engineering," University of Maryland, Technical

Report TR-1765, July 1987

6Mark, L. and H. D. Rombach, "Generating Customized Soft-

ware Engineering Information Bases From Software Process and

Product Specifications," Proceedinas of the 22nd Annual

Hawaii International Conference on System Sciences, January
1989

5McGarry, F. and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"
Proceedinus of the 21st Annual Hawaii International Con-

ference on System Sciences, January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the

Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedinu$ Qf _h_ H%w%iian Inter-

national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research Techn01oqy Workshop (Proceedings), March
1980

3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-

perience With Independent Verification and Validation,"

Proceedinqs of the Eiqhth International Computer Software

and APPlications Conference, November 1984

5Ramsey, C. and V. R. Basili, "An Evaluation of Expert Sys-

tems for Software Engineering Management," University of

Maryland, Technical Report TR-1708, September 1986

9913

B-10

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process

Using Structural Coverage," Proceedings of the Eiuhth Inter-

national Conference on Software Enaineerinq. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of

Software Structure on Maintainability," IEEE Transactions on

Software Engineerinq, March 1987

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment

of Maintenance: An Industrial Case Study," Proceedinus From

the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Prod-

uct Specifications: A Basis for Generating Customized SE

Information Bases," Proceedings of the 22nd Annual Hawaii

International Conference on System Sciences, January 1989

5Seidewitz, E., "General Object-Oriented Software Develop-

ment: Background and Experience," Proceedings of the 21st

Hawaii International Conference on System Sciences, January

1988

6Seidewitz, E., "General Object-Oriented Software Develop-

ment with Ada: A Life Cycle Approach," Procee4inqs Qf the

CASE Technoloqv Conference, April 1988

6Seidewitz, E., "Object-Oriented Programming in Smalltalk

and Ada," Proceedinus of the 1987 Conference on Object-

Oriented Prouramminu Systems. Lanquaqes, and Applications,

October 1987

4Seidewitz, E., and M. Stark, "Towards a General Object-

Oriented Software Development Methodology," Proceedinqs of

the First International Symposium on A_a for the NASA Space

Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-

Oriented Ada Lifecycle," Proceedinas of the Joint Ada Con-

ference, March 1987

Turner, C., and G. Caron, A Comparison of RAD¢ an_ NASA/SEL

Software Development Data, Data and Analysis Center for

Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/$EL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-

cation, April 1981

9913

B-II

5Valett, J. and F. McGarry, "A Summary of Software Measure-

ment Experiences in the Software Engineering Laboratory,"
PEoceedinus of the 21st Annual Hawaii International Confer-

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software

Enuineerina, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," Proceedinus of the Joint Ada Con-

_erence, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedinas of the Twelfth Conference on

the Interface of Statistics and Comvuter Science. New York:

IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for E@-

per!mental Computer Science Research," Emoirical Foundations

for Computer and Information Science (proceedings),
November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study," Proceedinus of the 26th Annual T@ch-
nical Symposium of the Washinuton. D. C.. Chapter of th_ ACM,
June 1987

6Zelkowitz, M. V., "Resource Utilization During Software

Development," Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedinus of the Soft-

ware Life Cycle Manaqement Workshop, September 1977

NOTES:

iThis article also appears in SEL-82-004, Collected Soft-

ware Enuineerinu Paper$_ Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Enaineerin0 Papers: Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Sof_-

war@ Engin_erinq Papers: Volum@ III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-

ware Engineerinq P_per$: Volum_ IV, November 1986.

9913

B-12

5This article also appears in SEL-87-009, Collected Soft-
ware EnQineerinq Papers: Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Soft-

ware Enuineerinu Papers: Volume VI, November 1988.

9913

B-13

